Roberta2024 commited on
Commit
7b6709f
·
verified ·
1 Parent(s): 9c6c0d0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +80 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """keyword_extraction"""
3
+
4
+ import requests
5
+ import jieba
6
+ from keybert import KeyBERT
7
+ from sklearn.feature_extraction.text import CountVectorizer
8
+ import streamlit as st
9
+ import matplotlib.pyplot as plt
10
+ from matplotlib.font_manager import FontProperties
11
+
12
+ # 下載字體
13
+ def download_font(url, save_path):
14
+ response = requests.get(url)
15
+ with open(save_path, 'wb') as f:
16
+ f.write(response.content)
17
+
18
+ # 字體URL和保存路徑
19
+ font_url = 'https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_&export=download'
20
+ font_path = 'TaipeiSansTCBeta-Regular.ttf'
21
+
22
+ # 下載字體
23
+ download_font(font_url, font_path)
24
+
25
+ # 設置字體
26
+ font_prop = FontProperties(fname=font_path)
27
+
28
+ # 讀取繁體中文詞典
29
+ # jieba.set_dictionary('path_to_your_dict.txt') # 繁體中文詞典的實際路徑,若需要繁體字典請取消註解並設置正確路徑
30
+
31
+ # 2. 定義斷詞函數
32
+ def jieba_tokenizer(text):
33
+ return jieba.lcut(text)
34
+
35
+ # 3. 初始化CountVectorizer並定義KeyBERT模型
36
+ vectorizer = CountVectorizer(tokenizer=jieba_tokenizer)
37
+ kw_model = KeyBERT()
38
+
39
+ # 4. 提取關鍵詞的函數
40
+ def extract_keywords(doc):
41
+ keywords = kw_model.extract_keywords(doc, vectorizer=vectorizer)
42
+ return keywords
43
+
44
+ # 5. 畫圖函數
45
+ def plot_keywords(keywords, title):
46
+ words = [kw[0] for kw in keywords]
47
+ scores = [kw[1] for kw in keywords]
48
+
49
+ plt.figure(figsize=(10, 6))
50
+ plt.barh(words, scores, color='skyblue')
51
+ plt.xlabel('分數', fontproperties=font_prop)
52
+ plt.title(title, fontproperties=font_prop)
53
+ plt.gca().invert_yaxis() # 反轉Y軸,使得分數最高的關鍵詞在最上面
54
+ plt.xticks(fontproperties=font_prop)
55
+ plt.yticks(fontproperties=font_prop)
56
+ st.pyplot(plt)
57
+
58
+ # 6. 建立Streamlit網頁應用程式
59
+ st.title("中文關鍵詞提取工具")
60
+ doc = st.text_area("請輸入文章:")
61
+
62
+ if st.button("提取關鍵詞"):
63
+ if doc:
64
+ keywords = extract_keywords(doc)
65
+ st.write("關鍵詞提取結果:")
66
+ for keyword in keywords:
67
+ st.write(f"{keyword[0]}: {keyword[1]:.4f}")
68
+
69
+ plot_keywords(keywords, "關鍵詞提取結果")
70
+
71
+ # 使用另一個模型進行關鍵詞提取
72
+ kw_model_multilingual = KeyBERT(model='distiluse-base-multilingual-cased-v1')
73
+ keywords_multilingual = kw_model_multilingual.extract_keywords(doc, vectorizer=vectorizer)
74
+ st.write("多語言模型關鍵詞提取結果:")
75
+ for keyword in keywords_multilingual:
76
+ st.write(f"{keyword[0]}: {keyword[1]:.4f}")
77
+
78
+ plot_keywords(keywords_multilingual, "多語言模型關鍵詞提取結果")
79
+ else:
80
+ st.write("請輸入文章內容以進行關鍵詞提取。")