Polaris-4B-Chat / app.py
ReallyFloppyPenguin's picture
Create app.py
e7f0eb4 verified
raw
history blame
11.4 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import os
from typing import List, Tuple
import re
class PolarisModel:
"""
POLARIS-4B-Preview: A Post-training recipe for scaling RL on Advanced Reasoning models
Specialized for mathematical reasoning and problem-solving tasks.
"""
def __init__(self):
self.model_name = "POLARIS-Project/Polaris-4B-Preview"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
self.load_model()
def load_model(self):
"""Load the POLARIS model with optimized settings for reasoning tasks"""
try:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="left"
)
# Set pad token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Configure for efficient inference
if self.device == "cuda":
# Use 4-bit quantization for GPU to fit 4B model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16
)
else:
# CPU inference
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map="cpu",
trust_remote_code=True,
torch_dtype=torch.float32
)
print(f"✅ POLARIS-4B-Preview loaded successfully on {self.device}")
except Exception as e:
print(f"❌ Error loading model: {e}")
# Fallback to a smaller model if POLARIS fails to load
try:
print("🔄 Attempting to load fallback model...")
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
self.model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
self.tokenizer.pad_token = self.tokenizer.eos_token
print("✅ Fallback model loaded")
except Exception as fallback_error:
print(f"❌ Fallback model also failed: {fallback_error}")
self.model = None
self.tokenizer = None
def generate_reasoning_response(
self,
prompt: str,
max_length: int = 2048,
temperature: float = 0.7,
top_p: float = 0.9,
do_sample: bool = True,
num_return_sequences: int = 1
) -> str:
"""
Generate response with chain-of-thought reasoning optimized for POLARIS
"""
if not self.model or not self.tokenizer:
return "❌ Model not loaded. Please check the model loading status."
try:
# Format prompt for mathematical reasoning
formatted_prompt = self.format_reasoning_prompt(prompt)
# Tokenize input
inputs = self.tokenizer.encode(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=1024
).to(self.device)
# Generate with optimized parameters for reasoning
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=max_length - inputs.shape[1],
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1,
length_penalty=1.0,
early_stopping=True
)
# Decode response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response[len(formatted_prompt):].strip()
return self.format_response(response)
except Exception as e:
return f"❌ Error generating response: {str(e)}"
def format_reasoning_prompt(self, user_input: str) -> str:
"""Format prompt to encourage step-by-step reasoning"""
if any(keyword in user_input.lower() for keyword in ['solve', 'calculate', 'find', 'prove', 'show']):
return f"""<|im_start|>system
You are POLARIS, an advanced reasoning model specialized in mathematical problem-solving.
Approach each problem step-by-step with clear reasoning. Show your work and explain each step.
<|im_end|>
<|im_start|>user
{user_input}
Please solve this step-by-step:
<|im_end|>
<|im_start|>assistant
I'll solve this step-by-step:
"""
else:
return f"""<|im_start|>system
You are POLARIS, an advanced reasoning model. Provide thoughtful, well-reasoned responses.
<|im_end|>
<|im_start|>user
{user_input}
<|im_end|>
<|im_start|>assistant
"""
def format_response(self, response: str) -> str:
"""Clean and format the model response"""
# Remove potential artifacts
response = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', response, flags=re.DOTALL)
response = response.strip()
# Ensure proper formatting for mathematical expressions
if '$$' in response or '\\(' in response:
response = "🧮 **Mathematical Solution:**\n\n" + response
return response
# Initialize the model
polaris_model = PolarisModel()
def chat_with_polaris(
message: str,
history: List[Tuple[str, str]] = None,
temperature: float = 0.7,
max_length: int = 1024
) -> Tuple[str, List[Tuple[str, str]]]:
"""Main chat function for Gradio interface"""
if history is None:
history = []
if not message.strip():
return "", history
# Generate response
response = polaris_model.generate_reasoning_response(
message,
temperature=temperature,
max_length=max_length
)
# Update history
history.append((message, response))
return "", history
def clear_chat():
"""Clear the chat history"""
return [], []
def get_model_info():
"""Return information about the POLARIS model"""
return """
## 🌠 POLARIS-4B-Preview
**POLARIS** is a post-training recipe for scaling Reinforcement Learning on Advanced Reasoning models.
### Key Features:
- **4B parameters** optimized for mathematical reasoning
- **Advanced Chain-of-Thought** reasoning capabilities
- **Superior performance** on mathematical benchmarks (AIME, AMC, Olympiad)
- **Outperforms larger models** through specialized RL training
### Benchmark Results:
- **AIME24**: 81.2% (avg@32)
- **AIME25**: 79.4% (avg@32)
- **AMC23**: 94.8% (avg@8)
- **Minerva Math**: 44.0% (avg@4)
- **Olympiad Bench**: 69.1% (avg@4)
### Best Use Cases:
- Mathematical problem solving
- Step-by-step reasoning tasks
- Competition math problems
- Logical reasoning challenges
Try asking mathematical questions or reasoning problems!
"""
# Create example problems for the interface
example_problems = [
"Solve: If x + y = 10 and x - y = 4, find the values of x and y.",
"Find the derivative of f(x) = 3x² + 2x - 1",
"Prove that the square root of 2 is irrational.",
"A rectangle has a perimeter of 24 cm and an area of 35 cm². Find its dimensions.",
"What is the sum of the first 100 positive integers?",
"Solve the quadratic equation: 2x² - 7x + 3 = 0"
]
# Create the Gradio interface
with gr.Blocks(
title="🌠 POLARIS-4B-Preview - Advanced Reasoning Model",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-message {
font-size: 16px !important;
}
"""
) as demo:
gr.Markdown("""
# 🌠 POLARIS-4B-Preview
## Advanced Reasoning Model for Mathematical Problem Solving
POLARIS uses reinforcement learning to achieve state-of-the-art performance on mathematical reasoning tasks.
Try asking mathematical questions, logic problems, or step-by-step reasoning challenges!
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Enter your mathematical problem or reasoning question...",
show_label=False,
scale=5,
container=False
)
submit_btn = gr.Button("🚀 Solve", scale=1, variant="primary")
clear_btn = gr.Button("🗑️ Clear", scale=1)
with gr.Column(scale=1):
gr.Markdown("### ⚙️ Settings")
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative"
)
max_length = gr.Slider(
minimum=256,
maximum=2048,
value=1024,
step=128,
label="Max Response Length",
info="Maximum tokens to generate"
)
gr.Markdown("### 📚 Example Problems")
for i, example in enumerate(example_problems):
gr.Button(
f"Example {i+1}",
size="sm"
).click(
lambda x=example: x,
outputs=[msg]
)
with gr.Row():
with gr.Column():
gr.Markdown("### 📊 Model Information")
model_info = gr.Markdown(get_model_info())
# Event handlers
submit_btn.click(
chat_with_polaris,
inputs=[msg, chatbot, temperature, max_length],
outputs=[msg, chatbot]
)
msg.submit(
chat_with_polaris,
inputs=[msg, chatbot, temperature, max_length],
outputs=[msg, chatbot]
)
clear_btn.click(
clear_chat,
outputs=[chatbot]
)
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
)