File size: 11,375 Bytes
e7f0eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import os
from typing import List, Tuple
import re
class PolarisModel:
"""
POLARIS-4B-Preview: A Post-training recipe for scaling RL on Advanced Reasoning models
Specialized for mathematical reasoning and problem-solving tasks.
"""
def __init__(self):
self.model_name = "POLARIS-Project/Polaris-4B-Preview"
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
self.load_model()
def load_model(self):
"""Load the POLARIS model with optimized settings for reasoning tasks"""
try:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name,
trust_remote_code=True,
padding_side="left"
)
# Set pad token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Configure for efficient inference
if self.device == "cuda":
# Use 4-bit quantization for GPU to fit 4B model
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.float16
)
else:
# CPU inference
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map="cpu",
trust_remote_code=True,
torch_dtype=torch.float32
)
print(f"โ
POLARIS-4B-Preview loaded successfully on {self.device}")
except Exception as e:
print(f"โ Error loading model: {e}")
# Fallback to a smaller model if POLARIS fails to load
try:
print("๐ Attempting to load fallback model...")
self.tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
self.model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
self.tokenizer.pad_token = self.tokenizer.eos_token
print("โ
Fallback model loaded")
except Exception as fallback_error:
print(f"โ Fallback model also failed: {fallback_error}")
self.model = None
self.tokenizer = None
def generate_reasoning_response(
self,
prompt: str,
max_length: int = 2048,
temperature: float = 0.7,
top_p: float = 0.9,
do_sample: bool = True,
num_return_sequences: int = 1
) -> str:
"""
Generate response with chain-of-thought reasoning optimized for POLARIS
"""
if not self.model or not self.tokenizer:
return "โ Model not loaded. Please check the model loading status."
try:
# Format prompt for mathematical reasoning
formatted_prompt = self.format_reasoning_prompt(prompt)
# Tokenize input
inputs = self.tokenizer.encode(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=1024
).to(self.device)
# Generate with optimized parameters for reasoning
with torch.no_grad():
outputs = self.model.generate(
inputs,
max_new_tokens=max_length - inputs.shape[1],
temperature=temperature,
top_p=top_p,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
pad_token_id=self.tokenizer.pad_token_id,
eos_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1,
length_penalty=1.0,
early_stopping=True
)
# Decode response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = full_response[len(formatted_prompt):].strip()
return self.format_response(response)
except Exception as e:
return f"โ Error generating response: {str(e)}"
def format_reasoning_prompt(self, user_input: str) -> str:
"""Format prompt to encourage step-by-step reasoning"""
if any(keyword in user_input.lower() for keyword in ['solve', 'calculate', 'find', 'prove', 'show']):
return f"""<|im_start|>system
You are POLARIS, an advanced reasoning model specialized in mathematical problem-solving.
Approach each problem step-by-step with clear reasoning. Show your work and explain each step.
<|im_end|>
<|im_start|>user
{user_input}
Please solve this step-by-step:
<|im_end|>
<|im_start|>assistant
I'll solve this step-by-step:
"""
else:
return f"""<|im_start|>system
You are POLARIS, an advanced reasoning model. Provide thoughtful, well-reasoned responses.
<|im_end|>
<|im_start|>user
{user_input}
<|im_end|>
<|im_start|>assistant
"""
def format_response(self, response: str) -> str:
"""Clean and format the model response"""
# Remove potential artifacts
response = re.sub(r'<\|im_start\|>.*?<\|im_end\|>', '', response, flags=re.DOTALL)
response = response.strip()
# Ensure proper formatting for mathematical expressions
if '$$' in response or '\\(' in response:
response = "๐งฎ **Mathematical Solution:**\n\n" + response
return response
# Initialize the model
polaris_model = PolarisModel()
def chat_with_polaris(
message: str,
history: List[Tuple[str, str]] = None,
temperature: float = 0.7,
max_length: int = 1024
) -> Tuple[str, List[Tuple[str, str]]]:
"""Main chat function for Gradio interface"""
if history is None:
history = []
if not message.strip():
return "", history
# Generate response
response = polaris_model.generate_reasoning_response(
message,
temperature=temperature,
max_length=max_length
)
# Update history
history.append((message, response))
return "", history
def clear_chat():
"""Clear the chat history"""
return [], []
def get_model_info():
"""Return information about the POLARIS model"""
return """
## ๐ POLARIS-4B-Preview
**POLARIS** is a post-training recipe for scaling Reinforcement Learning on Advanced Reasoning models.
### Key Features:
- **4B parameters** optimized for mathematical reasoning
- **Advanced Chain-of-Thought** reasoning capabilities
- **Superior performance** on mathematical benchmarks (AIME, AMC, Olympiad)
- **Outperforms larger models** through specialized RL training
### Benchmark Results:
- **AIME24**: 81.2% (avg@32)
- **AIME25**: 79.4% (avg@32)
- **AMC23**: 94.8% (avg@8)
- **Minerva Math**: 44.0% (avg@4)
- **Olympiad Bench**: 69.1% (avg@4)
### Best Use Cases:
- Mathematical problem solving
- Step-by-step reasoning tasks
- Competition math problems
- Logical reasoning challenges
Try asking mathematical questions or reasoning problems!
"""
# Create example problems for the interface
example_problems = [
"Solve: If x + y = 10 and x - y = 4, find the values of x and y.",
"Find the derivative of f(x) = 3xยฒ + 2x - 1",
"Prove that the square root of 2 is irrational.",
"A rectangle has a perimeter of 24 cm and an area of 35 cmยฒ. Find its dimensions.",
"What is the sum of the first 100 positive integers?",
"Solve the quadratic equation: 2xยฒ - 7x + 3 = 0"
]
# Create the Gradio interface
with gr.Blocks(
title="๐ POLARIS-4B-Preview - Advanced Reasoning Model",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
}
.chat-message {
font-size: 16px !important;
}
"""
) as demo:
gr.Markdown("""
# ๐ POLARIS-4B-Preview
## Advanced Reasoning Model for Mathematical Problem Solving
POLARIS uses reinforcement learning to achieve state-of-the-art performance on mathematical reasoning tasks.
Try asking mathematical questions, logic problems, or step-by-step reasoning challenges!
""")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
height=600,
show_label=False,
container=True,
bubble_full_width=False
)
with gr.Row():
msg = gr.Textbox(
placeholder="Enter your mathematical problem or reasoning question...",
show_label=False,
scale=5,
container=False
)
submit_btn = gr.Button("๐ Solve", scale=1, variant="primary")
clear_btn = gr.Button("๐๏ธ Clear", scale=1)
with gr.Column(scale=1):
gr.Markdown("### โ๏ธ Settings")
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature",
info="Higher = more creative"
)
max_length = gr.Slider(
minimum=256,
maximum=2048,
value=1024,
step=128,
label="Max Response Length",
info="Maximum tokens to generate"
)
gr.Markdown("### ๐ Example Problems")
for i, example in enumerate(example_problems):
gr.Button(
f"Example {i+1}",
size="sm"
).click(
lambda x=example: x,
outputs=[msg]
)
with gr.Row():
with gr.Column():
gr.Markdown("### ๐ Model Information")
model_info = gr.Markdown(get_model_info())
# Event handlers
submit_btn.click(
chat_with_polaris,
inputs=[msg, chatbot, temperature, max_length],
outputs=[msg, chatbot]
)
msg.submit(
chat_with_polaris,
inputs=[msg, chatbot, temperature, max_length],
outputs=[msg, chatbot]
)
clear_btn.click(
clear_chat,
outputs=[chatbot]
)
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |