Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import random | |
import numpy as np | |
from inspect import signature | |
from diffusers import ( | |
FluxPipeline, | |
StableDiffusion3Pipeline, | |
PixArtSigmaPipeline, | |
SanaPipeline, | |
AuraFlowPipeline, | |
Kandinsky3Pipeline, | |
HunyuanDiTPipeline, | |
LuminaText2ImgPipeline,AutoPipelineForText2Image | |
) | |
import gradio as gr | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from pathlib import Path | |
import time | |
import os | |
from datetime import datetime | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
class ProgressPipeline(DiffusionPipeline): | |
def __init__(self, original_pipeline): | |
super().__init__() | |
self.original_pipeline = original_pipeline | |
# Register all components from the original pipeline | |
for attr_name, attr_value in vars(original_pipeline).items(): | |
setattr(self, attr_name, attr_value) | |
def __call__( | |
self, | |
prompt, | |
num_inference_steps=30, | |
generator=None, | |
guidance_scale=7.5, | |
callback=None, | |
callback_steps=1, | |
**kwargs | |
): | |
# Initialize the progress tracking | |
self._num_inference_steps = num_inference_steps | |
self._step = 0 | |
def progress_callback(step_index, timestep, callback_kwargs): | |
if callback and step_index % callback_steps == 0: | |
# Pass self (the pipeline) to the callback | |
callback(self, step_index, timestep, callback_kwargs) | |
return callback_kwargs | |
# Monkey patch the original pipeline's progress tracking | |
original_step = self.original_pipeline.scheduler.step | |
def wrapped_step(*args, **kwargs): | |
self._step += 1 | |
progress_callback(self._step, None, {}) | |
return original_step(*args, **kwargs) | |
self.original_pipeline.scheduler.step = wrapped_step | |
try: | |
# Call the original pipeline | |
result = self.original_pipeline( | |
prompt=prompt, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
**kwargs | |
) | |
return result | |
finally: | |
# Restore the original step function | |
self.original_pipeline.scheduler.step = original_step | |
cache_dir = '/workspace/hf_cache' | |
MODEL_CONFIGS = { | |
"FLUX": { | |
"repo_id": "black-forest-labs/FLUX.1-dev", | |
"pipeline_class": FluxPipeline, | |
}, | |
"Stable Diffusion 3.5": { | |
"repo_id": "stabilityai/stable-diffusion-3.5-large", | |
"pipeline_class": StableDiffusion3Pipeline, | |
}, | |
"PixArt": { | |
"repo_id": "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS", | |
"pipeline_class": PixArtSigmaPipeline, | |
}, | |
"SANA": { | |
"repo_id": "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", | |
"pipeline_class": SanaPipeline, | |
}, | |
"AuraFlow": { | |
"repo_id": "fal/AuraFlow", | |
"pipeline_class": AuraFlowPipeline, | |
}, | |
"Kandinsky": { | |
"repo_id": "kandinsky-community/kandinsky-3", | |
"pipeline_class": Kandinsky3Pipeline, | |
}, | |
"Hunyuan": { | |
"repo_id": "Tencent-Hunyuan/HunyuanDiT-Diffusers", | |
"pipeline_class": HunyuanDiTPipeline, | |
}, | |
"Lumina": { | |
"repo_id": "Alpha-VLLM/Lumina-Next-SFT-diffusers", | |
"pipeline_class": LuminaText2ImgPipeline, | |
} | |
} | |
def generate_image_with_progress(model_name,pipe, prompt, num_steps, guidance_scale=3.5, seed=None,negative_prompt=None, randomize_seed=None, width=1024, height=1024, num_inference_steps=40, progress=gr.Progress(track_tqdm=False)): | |
generator = None | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
if seed is not None: | |
generator = torch.Generator("cuda").manual_seed(seed) | |
else: | |
generator = torch.Generator("cuda") | |
def callback(pipe, step_index, timestep, callback_kwargs): | |
print(f" callback => {step_index}, {timestep}") | |
if step_index is None: | |
step_index = 0 | |
cur_prg = step_index / num_steps | |
progress(cur_prg, desc=f"Step {step_index}/{num_steps}") | |
return callback_kwargs | |
print(f"START GENR ") | |
# Get the signature of the pipe | |
pipe_signature = signature(pipe) | |
# Check for the presence of "guidance_scale" and "callback_on_step_end" in the signature | |
has_guidance_scale = "guidance_scale" in pipe_signature.parameters | |
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters | |
# Define common arguments | |
common_args = { | |
"prompt": prompt, | |
"num_inference_steps": num_steps, | |
"negative_prompt": negative_prompt, | |
"width": width, | |
"height": height, | |
"generator": generator, | |
} | |
if has_guidance_scale: | |
common_args["guidance_scale"] = guidance_scale | |
if has_callback_on_step_end: | |
print("has callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale") | |
common_args["callback_on_step_end"] = callback | |
else: | |
print("NO callback_on_step_end and", "has guidance_scale" if has_guidance_scale else "NO guidance_scale") | |
common_args["callback"] = callback | |
common_args["callback_steps"] = 1 | |
# Generate image | |
image = pipe(**common_args).images[0] | |
filepath = save_generated_image(image, model_name, prompt) | |
# Then, reload the gallery | |
images, load_message = load_images_from_directory(model_name) | |
print(f"Saved image to: {filepath}") | |
return seed, image, images | |
def create_pipeline_logic(prompt_text, model_name, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=40,): | |
print(f"starting {model_name}") | |
progress = gr.Progress(track_tqdm=False) | |
config = MODEL_CONFIGS[model_name] | |
pipe_class = config["pipeline_class"] | |
pipe = None | |
b_pipe = AutoPipelineForText2Image.from_pretrained( | |
config["repo_id"], | |
#variant="fp16", | |
#cache_dir=config["cache_dir"], | |
torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe_signature = signature(b_pipe) | |
# Check for the presence of "callback_on_step_end" in the signature | |
has_callback_on_step_end = "callback_on_step_end" in pipe_signature.parameters | |
if not has_callback_on_step_end: | |
pipe = ProgressPipeline(b_pipe) | |
print("ProgressPipeline specal") | |
else: | |
pipe = b_pipe | |
gen_seed,image, images = generate_image_with_progress( | |
model_name,pipe, prompt_text, num_steps=num_inference_steps, guidance_scale=guidance_scale, seed=seed,negative_prompt = negative_prompt, randomize_seed = randomize_seed, width = width, height = height, progress=progress | |
) | |
return f"Seed: {gen_seed}", image, images | |
def main(): | |
with gr.Blocks() as app: | |
gr.Markdown("# Dynamic Multiple Model Image Generation") | |
prompt_text = gr.Textbox(label="Enter prompt") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=100, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=7.5, | |
step=0.1, | |
value=4.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=40, | |
) | |
for model_name, config in MODEL_CONFIGS.items(): | |
#global gallery | |
with gr.Tab(model_name) as tab_model: | |
button = gr.Button(f"Run {model_name}") | |
output = gr.Textbox(label="Status") | |
img = gr.Image(label=model_name, height=300) | |
gallery = gr.Gallery( | |
label="Image Gallery", | |
show_label=True, | |
columns=4, | |
rows=3, | |
height=600, | |
object_fit="contain" | |
) | |
tab_model.select( | |
fn=load_images_from_directory, | |
inputs=[gr.Text(value= model_name,visible=False)], | |
outputs=[gallery], | |
) | |
button.click(fn=create_pipeline_logic, inputs=[prompt_text, gr.Text(value= model_name,visible=False), negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps], outputs=[output, img, gallery]) | |
app.launch() | |
def save_generated_image(image, model_name, prompt): | |
"""Save generated image with timestamp and model name""" | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
# Create sanitized filename from prompt (first 30 chars) | |
prompt_part = "".join(c for c in prompt[:30] if c.isalnum() or c in (' ', '-', '_')).strip() | |
filename = f"{timestamp}_{model_name}_{prompt_part}.png" | |
path = Path(model_name) | |
path.mkdir(parents=True, exist_ok=True) | |
filepath = os.path.join(model_name, filename) | |
image.save(filepath) | |
return filepath | |
def load_images_from_directory(directory_path): | |
""" | |
Load all images from the specified directory. | |
Returns a list of image file paths. | |
""" | |
print(f"Loading images {directory_path}") | |
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'} | |
directory = Path(directory_path) | |
if not directory.exists(): | |
print(f"NO Direc {directory_path} ") | |
return [], f"Error: Directory '{directory_path}' does not exist" | |
image_files = [ | |
str(f) for f in directory.iterdir() | |
if f.suffix.lower() in image_extensions and f.is_file() | |
] | |
if not image_files: | |
print(f"NO images {directory_path} ") | |
return [], f"No images found in directory '{directory_path}'" | |
print(f"has images {directory_path} {len(image_files)}") | |
return image_files, f"Found {len(image_files)} images" | |
if __name__ == "__main__": | |
main() | |