Spaces:
Sleeping
Sleeping
A newer version of the Streamlit SDK is available:
1.41.1
metadata
title: S MultiMAE
emoji: π
colorFrom: gray
colorTo: blue
sdk: streamlit
sdk_version: 1.33.0
app_file: streamlit_apps/app.py
pinned: false
S-MultiMAE
This repository provides the official implementation of S-MultiMAE A Multi-Ground Truth approach for RGB-D Saliency Detection
Nguyen Truong Thinh Huynh, Van Linh Pham, Xuan Toan Mai and Tuan Anh Tran
Model weights
Backbone | #params | Training paradigm | Weights | Input size |
---|---|---|---|---|
ViT-L | 328,318,529 | Multi-GT | Download | 224x224 |
ViT-B | 107,654,977 | Multi-GT | Download | 224x224 |
Demo on HuggingFace
How to run locally
Create a virtual environment
We recommend using python 3.10 or higher.
python3.10 -m venv env
source env/bin/activate
pip install -r requirements.txt
Download trained weights
- Download model weights and put it in the folder
weights
. You may also need to download the weights of DPT model (a rgb2depth model). Theweights
folder will look like this:
βββ weights
β βββ omnidata_rgb2depth_dpt_hybrid.pth
β βββ s-multimae-cfgv4_0_2006-top1.pth
β βββ s-multimae-cfgv4_0_2007-top1.pth
Run
- Run streamlit app
streamlit run streamlit_apps/app.py --server.port 9113 --browser.gatherUsageStats False --server.fileWatcherType none
Datasets
COME15K dataset
1 GT | 2 GTs | 3 GTs | 4 GTs | 5 GTs | |
---|---|---|---|---|---|
COME8K (8025 samples) | 77.61% | 1.71% | 18.28% | 2.24% | 0.16% |
COME-E (4600 samples) | 70.5% | 1.87% | 21.15% | 5.70% | 0.78% |
COME8K (3000 samples) | 62.3% | 2.00% | 25.63% | 8.37% | 1.70% |
@inproceedings{cascaded_rgbd_sod,
title={RGB-D Saliency Detection via Cascaded Mutual Information Minimization},
author={Zhang, Jing and Fan, Deng-Ping and Dai, Yuchao and Yu, Xin and Zhong, Yiran and Barnes, Nick and Shao, Ling},
booktitle={International Conference on Computer Vision (ICCV)},
year={2021}
}
Acknowledgements
S-MultiMAE is build on top of MultiMAE. We kindly thank the authors for releasing their code.
@article{bachmann2022multimae,
author = {Roman Bachmann and David Mizrahi and Andrei Atanov and Amir Zamir},
title = {{MultiMAE}: Multi-modal Multi-task Masked Autoencoders},
booktitle = {European Conference on Computer Vision},
year = {2022},
}
References
All references are cited in these files: