|
import streamlit as st |
|
import pandas as pd |
|
from app_config import AppConfig |
|
from data_processor import DataProcessor |
|
from visualization import Visualization |
|
from ai_analysis import AIAnalysis |
|
from sidebar import Sidebar |
|
|
|
|
|
def main(): |
|
|
|
app_config = AppConfig() |
|
|
|
|
|
sidebar = Sidebar() |
|
sidebar.display() |
|
|
|
|
|
data_processor = DataProcessor() |
|
|
|
|
|
visualization = Visualization() |
|
|
|
|
|
ai_analysis = AIAnalysis(data_processor.client) |
|
|
|
st.title("Literacy Implementation Record Data Analysis") |
|
|
|
|
|
st.markdown(""" |
|
This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction? |
|
""") |
|
|
|
|
|
date_option = st.radio( |
|
"Select data range:", |
|
("All Data", "Date Range") |
|
) |
|
|
|
|
|
start_date = None |
|
end_date = None |
|
|
|
if date_option == "Date Range": |
|
|
|
start_date = st.date_input("Start Date") |
|
end_date = st.date_input("End Date") |
|
|
|
|
|
if start_date > end_date: |
|
st.error("Start date must be before end date.") |
|
return |
|
|
|
|
|
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"]) |
|
|
|
if uploaded_file is not None: |
|
try: |
|
|
|
df = data_processor.read_excel(uploaded_file) |
|
|
|
|
|
df = data_processor.format_session_data(df) |
|
|
|
|
|
df = data_processor.replace_student_names_with_initials(df) |
|
|
|
|
|
if date_option == "Date Range": |
|
|
|
start_date = pd.to_datetime(start_date).date() |
|
end_date = pd.to_datetime(end_date).date() |
|
|
|
|
|
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None) |
|
if date_column: |
|
|
|
df = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)] |
|
else: |
|
st.error("Date column not found in the data.") |
|
return |
|
|
|
st.subheader("Uploaded Data") |
|
st.write(df) |
|
|
|
|
|
intervention_column = data_processor.get_intervention_column(df) |
|
if intervention_column not in df.columns: |
|
st.error(f"Expected column '{intervention_column}' not found.") |
|
return |
|
|
|
|
|
intervention_stats = data_processor.compute_intervention_statistics(df) |
|
st.subheader("Intervention Dosage") |
|
st.write(intervention_stats) |
|
|
|
|
|
col1, col2 = st.columns([3, 1]) |
|
|
|
with col1: |
|
intervention_fig = visualization.plot_intervention_statistics(intervention_stats) |
|
|
|
with col2: |
|
intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0] |
|
|
|
st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True) |
|
|
|
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True) |
|
|
|
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png") |
|
|
|
|
|
student_metrics_df = data_processor.compute_student_metrics(df) |
|
st.subheader("Student Attendance and Engagement") |
|
st.write(student_metrics_df) |
|
|
|
|
|
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df) |
|
|
|
|
|
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats) |
|
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png") |
|
|
|
|
|
student_metrics_df['Evaluation'] = student_metrics_df.apply( |
|
lambda row: data_processor.evaluate_student(row), axis=1 |
|
) |
|
st.subheader("Student Evaluations") |
|
st.write(student_metrics_df[['Student', 'Evaluation']]) |
|
|
|
|
|
for index, row in student_metrics_df.iterrows(): |
|
tree_diagram = visualization.build_tree_diagram(row) |
|
|
|
|
|
student_name = row['Student'] |
|
|
|
|
|
with st.expander(f"{student_name} Decision Tree", expanded=False): |
|
st.graphviz_chart(tree_diagram.source) |
|
|
|
|
|
llm_input = ai_analysis.prepare_llm_input(student_metrics_df) |
|
|
|
|
|
with st.spinner("Generating AI analysis..."): |
|
recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input) |
|
|
|
st.subheader("AI Analysis") |
|
st.markdown(recommendations) |
|
|
|
|
|
ai_analysis.download_llm_output(recommendations, "llm_output.txt") |
|
|
|
except Exception as e: |
|
st.error(f"Error processing the file: {str(e)}") |
|
|
|
if __name__ == '__main__': |
|
main() |