Update main.py
Browse files
main.py
CHANGED
|
@@ -1,171 +1,3 @@
|
|
| 1 |
-
# import streamlit as st
|
| 2 |
-
# import pandas as pd
|
| 3 |
-
# from app_config import AppConfig # Import the configurations class
|
| 4 |
-
# from data_processor import DataProcessor # Import the data analysis class
|
| 5 |
-
# from visualization import Visualization # Import the data viz class
|
| 6 |
-
# from ai_analysis import AIAnalysis # Import the ai analysis class
|
| 7 |
-
# from sidebar import Sidebar # Import the Sidebar class
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# def main():
|
| 11 |
-
# # Initialize the app configuration
|
| 12 |
-
# app_config = AppConfig()
|
| 13 |
-
|
| 14 |
-
# # Initialize the sidebar
|
| 15 |
-
# sidebar = Sidebar()
|
| 16 |
-
# sidebar.display()
|
| 17 |
-
|
| 18 |
-
# # Initialize the data processor
|
| 19 |
-
# data_processor = DataProcessor()
|
| 20 |
-
|
| 21 |
-
# # Initialize the visualization handler
|
| 22 |
-
# visualization = Visualization()
|
| 23 |
-
|
| 24 |
-
# # Initialize the AI analysis handler
|
| 25 |
-
# ai_analysis = AIAnalysis(data_processor.client)
|
| 26 |
-
|
| 27 |
-
# st.title("Literacy Implementation Record Data Analysis")
|
| 28 |
-
|
| 29 |
-
# # Add the descriptive text
|
| 30 |
-
# st.markdown("""
|
| 31 |
-
# This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction?
|
| 32 |
-
# """)
|
| 33 |
-
|
| 34 |
-
# # Date selection option
|
| 35 |
-
# date_option = st.radio(
|
| 36 |
-
# "Select data range:",
|
| 37 |
-
# ("All Data", "Date Range")
|
| 38 |
-
# )
|
| 39 |
-
|
| 40 |
-
# # Initialize start and end date variables
|
| 41 |
-
# start_date = None
|
| 42 |
-
# end_date = None
|
| 43 |
-
|
| 44 |
-
# if date_option == "Date Range":
|
| 45 |
-
# # Prompt user to enter start and end dates
|
| 46 |
-
# start_date = st.date_input("Start Date")
|
| 47 |
-
# end_date = st.date_input("End Date")
|
| 48 |
-
|
| 49 |
-
# # Ensure start date is before end date
|
| 50 |
-
# if start_date > end_date:
|
| 51 |
-
# st.error("Start date must be before end date.")
|
| 52 |
-
# return
|
| 53 |
-
|
| 54 |
-
# # File uploader
|
| 55 |
-
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
| 56 |
-
|
| 57 |
-
# if uploaded_file is not None:
|
| 58 |
-
# try:
|
| 59 |
-
# # Read the Excel file into a DataFrame
|
| 60 |
-
# df = data_processor.read_excel(uploaded_file)
|
| 61 |
-
|
| 62 |
-
# # Format the session data
|
| 63 |
-
# df = data_processor.format_session_data(df)
|
| 64 |
-
|
| 65 |
-
# # Replace student names with initials
|
| 66 |
-
# df = data_processor.replace_student_names_with_initials(df)
|
| 67 |
-
|
| 68 |
-
# # Filter data if date range is selected
|
| 69 |
-
# if date_option == "Date Range":
|
| 70 |
-
# # Convert start_date and end_date to datetime
|
| 71 |
-
# start_date = pd.to_datetime(start_date).date()
|
| 72 |
-
# end_date = pd.to_datetime(end_date).date()
|
| 73 |
-
|
| 74 |
-
# # Filter the DataFrame based on the selected date range
|
| 75 |
-
# df = df[(df['Date of Session'] >= start_date) & (df['Date of Session'] <= end_date)]
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# st.subheader("Uploaded Data")
|
| 79 |
-
# st.write(df)
|
| 80 |
-
|
| 81 |
-
# # Ensure expected column is available
|
| 82 |
-
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
| 83 |
-
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
| 84 |
-
# return
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
# #MOVE
|
| 88 |
-
# # Compute Intervention Session Statistics
|
| 89 |
-
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
| 90 |
-
# st.subheader("Intervention Dosage")
|
| 91 |
-
# st.write(intervention_stats)
|
| 92 |
-
|
| 93 |
-
# # Plot and download intervention statistics
|
| 94 |
-
# # intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
| 95 |
-
# # visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
| 96 |
-
|
| 97 |
-
# # Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
| 98 |
-
# col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
| 99 |
-
|
| 100 |
-
# with col1:
|
| 101 |
-
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
| 102 |
-
|
| 103 |
-
# with col2:
|
| 104 |
-
# intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
| 105 |
-
# # Display the "Intervention Frequency (%)" text
|
| 106 |
-
# st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
| 107 |
-
# # Display the frequency value below it
|
| 108 |
-
# st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
| 109 |
-
|
| 110 |
-
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
| 111 |
-
|
| 112 |
-
# # Compute Student Metrics
|
| 113 |
-
# student_metrics_df = data_processor.compute_student_metrics(df)
|
| 114 |
-
# st.subheader("Student Attendance and Engagement")
|
| 115 |
-
# st.write(student_metrics_df)
|
| 116 |
-
|
| 117 |
-
# # Compute Student Metric Averages
|
| 118 |
-
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
| 119 |
-
|
| 120 |
-
# # Plot and download student metrics
|
| 121 |
-
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
| 122 |
-
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
| 123 |
-
|
| 124 |
-
# # Evaluate each student and build decision tree diagrams
|
| 125 |
-
# student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
| 126 |
-
# lambda row: data_processor.evaluate_student(row), axis=1
|
| 127 |
-
# )
|
| 128 |
-
# st.subheader("Student Evaluations")
|
| 129 |
-
# st.write(student_metrics_df[['Student', 'Evaluation']])
|
| 130 |
-
|
| 131 |
-
# # # Build and display decision tree diagrams for each student
|
| 132 |
-
# # for index, row in student_metrics_df.iterrows():
|
| 133 |
-
# # tree_diagram = visualization.build_tree_diagram(row)
|
| 134 |
-
# # st.graphviz_chart(tree_diagram.source)
|
| 135 |
-
|
| 136 |
-
# # Build and display decision tree diagrams for each student
|
| 137 |
-
# for index, row in student_metrics_df.iterrows():
|
| 138 |
-
# tree_diagram = visualization.build_tree_diagram(row)
|
| 139 |
-
|
| 140 |
-
# # Get the student's name from the DataFrame
|
| 141 |
-
# student_name = row['Student']
|
| 142 |
-
|
| 143 |
-
# # Use st.expander to wrap the graphviz chart with the student's name
|
| 144 |
-
# with st.expander(f"{student_name} Decision Tree", expanded=False):
|
| 145 |
-
# st.graphviz_chart(tree_diagram.source)
|
| 146 |
-
|
| 147 |
-
# # Prepare input for the language model
|
| 148 |
-
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
| 149 |
-
|
| 150 |
-
# # Generate Notes and Recommendations using Hugging Face LLM
|
| 151 |
-
# with st.spinner("Generating AI analysis..."):
|
| 152 |
-
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
| 153 |
-
|
| 154 |
-
# st.subheader("AI Analysis")
|
| 155 |
-
# st.markdown(recommendations)
|
| 156 |
-
|
| 157 |
-
# # Download AI output
|
| 158 |
-
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
| 159 |
-
|
| 160 |
-
# except Exception as e:
|
| 161 |
-
# st.error(f"Error processing the file: {str(e)}")
|
| 162 |
-
|
| 163 |
-
# if __name__ == '__main__':
|
| 164 |
-
# main()
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
import streamlit as st
|
| 170 |
import pandas as pd
|
| 171 |
from app_config import AppConfig # Import the configurations class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
from app_config import AppConfig # Import the configurations class
|