ProfessorLeVesseur
commited on
Commit
•
b47d895
1
Parent(s):
f2086cb
Update main.py
Browse files
main.py
CHANGED
@@ -1,171 +1,3 @@
|
|
1 |
-
# import streamlit as st
|
2 |
-
# import pandas as pd
|
3 |
-
# from app_config import AppConfig # Import the configurations class
|
4 |
-
# from data_processor import DataProcessor # Import the data analysis class
|
5 |
-
# from visualization import Visualization # Import the data viz class
|
6 |
-
# from ai_analysis import AIAnalysis # Import the ai analysis class
|
7 |
-
# from sidebar import Sidebar # Import the Sidebar class
|
8 |
-
|
9 |
-
|
10 |
-
# def main():
|
11 |
-
# # Initialize the app configuration
|
12 |
-
# app_config = AppConfig()
|
13 |
-
|
14 |
-
# # Initialize the sidebar
|
15 |
-
# sidebar = Sidebar()
|
16 |
-
# sidebar.display()
|
17 |
-
|
18 |
-
# # Initialize the data processor
|
19 |
-
# data_processor = DataProcessor()
|
20 |
-
|
21 |
-
# # Initialize the visualization handler
|
22 |
-
# visualization = Visualization()
|
23 |
-
|
24 |
-
# # Initialize the AI analysis handler
|
25 |
-
# ai_analysis = AIAnalysis(data_processor.client)
|
26 |
-
|
27 |
-
# st.title("Literacy Implementation Record Data Analysis")
|
28 |
-
|
29 |
-
# # Add the descriptive text
|
30 |
-
# st.markdown("""
|
31 |
-
# This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction?
|
32 |
-
# """)
|
33 |
-
|
34 |
-
# # Date selection option
|
35 |
-
# date_option = st.radio(
|
36 |
-
# "Select data range:",
|
37 |
-
# ("All Data", "Date Range")
|
38 |
-
# )
|
39 |
-
|
40 |
-
# # Initialize start and end date variables
|
41 |
-
# start_date = None
|
42 |
-
# end_date = None
|
43 |
-
|
44 |
-
# if date_option == "Date Range":
|
45 |
-
# # Prompt user to enter start and end dates
|
46 |
-
# start_date = st.date_input("Start Date")
|
47 |
-
# end_date = st.date_input("End Date")
|
48 |
-
|
49 |
-
# # Ensure start date is before end date
|
50 |
-
# if start_date > end_date:
|
51 |
-
# st.error("Start date must be before end date.")
|
52 |
-
# return
|
53 |
-
|
54 |
-
# # File uploader
|
55 |
-
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
56 |
-
|
57 |
-
# if uploaded_file is not None:
|
58 |
-
# try:
|
59 |
-
# # Read the Excel file into a DataFrame
|
60 |
-
# df = data_processor.read_excel(uploaded_file)
|
61 |
-
|
62 |
-
# # Format the session data
|
63 |
-
# df = data_processor.format_session_data(df)
|
64 |
-
|
65 |
-
# # Replace student names with initials
|
66 |
-
# df = data_processor.replace_student_names_with_initials(df)
|
67 |
-
|
68 |
-
# # Filter data if date range is selected
|
69 |
-
# if date_option == "Date Range":
|
70 |
-
# # Convert start_date and end_date to datetime
|
71 |
-
# start_date = pd.to_datetime(start_date).date()
|
72 |
-
# end_date = pd.to_datetime(end_date).date()
|
73 |
-
|
74 |
-
# # Filter the DataFrame based on the selected date range
|
75 |
-
# df = df[(df['Date of Session'] >= start_date) & (df['Date of Session'] <= end_date)]
|
76 |
-
|
77 |
-
|
78 |
-
# st.subheader("Uploaded Data")
|
79 |
-
# st.write(df)
|
80 |
-
|
81 |
-
# # Ensure expected column is available
|
82 |
-
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
83 |
-
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
84 |
-
# return
|
85 |
-
|
86 |
-
|
87 |
-
# #MOVE
|
88 |
-
# # Compute Intervention Session Statistics
|
89 |
-
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
90 |
-
# st.subheader("Intervention Dosage")
|
91 |
-
# st.write(intervention_stats)
|
92 |
-
|
93 |
-
# # Plot and download intervention statistics
|
94 |
-
# # intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
95 |
-
# # visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
96 |
-
|
97 |
-
# # Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
98 |
-
# col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
99 |
-
|
100 |
-
# with col1:
|
101 |
-
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
102 |
-
|
103 |
-
# with col2:
|
104 |
-
# intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
105 |
-
# # Display the "Intervention Frequency (%)" text
|
106 |
-
# st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
107 |
-
# # Display the frequency value below it
|
108 |
-
# st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
109 |
-
|
110 |
-
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
111 |
-
|
112 |
-
# # Compute Student Metrics
|
113 |
-
# student_metrics_df = data_processor.compute_student_metrics(df)
|
114 |
-
# st.subheader("Student Attendance and Engagement")
|
115 |
-
# st.write(student_metrics_df)
|
116 |
-
|
117 |
-
# # Compute Student Metric Averages
|
118 |
-
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
119 |
-
|
120 |
-
# # Plot and download student metrics
|
121 |
-
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
122 |
-
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
123 |
-
|
124 |
-
# # Evaluate each student and build decision tree diagrams
|
125 |
-
# student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
126 |
-
# lambda row: data_processor.evaluate_student(row), axis=1
|
127 |
-
# )
|
128 |
-
# st.subheader("Student Evaluations")
|
129 |
-
# st.write(student_metrics_df[['Student', 'Evaluation']])
|
130 |
-
|
131 |
-
# # # Build and display decision tree diagrams for each student
|
132 |
-
# # for index, row in student_metrics_df.iterrows():
|
133 |
-
# # tree_diagram = visualization.build_tree_diagram(row)
|
134 |
-
# # st.graphviz_chart(tree_diagram.source)
|
135 |
-
|
136 |
-
# # Build and display decision tree diagrams for each student
|
137 |
-
# for index, row in student_metrics_df.iterrows():
|
138 |
-
# tree_diagram = visualization.build_tree_diagram(row)
|
139 |
-
|
140 |
-
# # Get the student's name from the DataFrame
|
141 |
-
# student_name = row['Student']
|
142 |
-
|
143 |
-
# # Use st.expander to wrap the graphviz chart with the student's name
|
144 |
-
# with st.expander(f"{student_name} Decision Tree", expanded=False):
|
145 |
-
# st.graphviz_chart(tree_diagram.source)
|
146 |
-
|
147 |
-
# # Prepare input for the language model
|
148 |
-
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
149 |
-
|
150 |
-
# # Generate Notes and Recommendations using Hugging Face LLM
|
151 |
-
# with st.spinner("Generating AI analysis..."):
|
152 |
-
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
153 |
-
|
154 |
-
# st.subheader("AI Analysis")
|
155 |
-
# st.markdown(recommendations)
|
156 |
-
|
157 |
-
# # Download AI output
|
158 |
-
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
159 |
-
|
160 |
-
# except Exception as e:
|
161 |
-
# st.error(f"Error processing the file: {str(e)}")
|
162 |
-
|
163 |
-
# if __name__ == '__main__':
|
164 |
-
# main()
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
import streamlit as st
|
170 |
import pandas as pd
|
171 |
from app_config import AppConfig # Import the configurations class
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from app_config import AppConfig # Import the configurations class
|