get_great_deal / llama.py
Pierre918's picture
Upload 43 files
540f246 verified
import modal
from modal import App, Volume, Image
# Setup
app = modal.App("llama")
image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate")
secrets = [modal.Secret.from_name("hf-secret")]
GPU = "T4"
MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b"
@app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800)
def generate(prompt: str) -> str:
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
# Quant Config
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4"
)
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=quant_config,
device_map="auto"
)
set_seed(42)
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
attention_mask = torch.ones(inputs.shape, device="cuda")
outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
return tokenizer.decode(outputs[0])