Spaces:
Runtime error
Runtime error
import modal | |
from modal import App, Volume, Image | |
# Setup | |
app = modal.App("llama") | |
image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate") | |
secrets = [modal.Secret.from_name("hf-secret")] | |
GPU = "T4" | |
MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b" | |
def generate(prompt: str) -> str: | |
import os | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed | |
# Quant Config | |
quant_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16, | |
bnb_4bit_quant_type="nf4" | |
) | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, | |
quantization_config=quant_config, | |
device_map="auto" | |
) | |
set_seed(42) | |
inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda") | |
attention_mask = torch.ones(inputs.shape, device="cuda") | |
outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1) | |
return tokenizer.decode(outputs[0]) | |