Pierre918 commited on
Commit
540f246
·
verified ·
1 Parent(s): bc60003

Upload 43 files

Browse files
Files changed (43) hide show
  1. .gitattributes +5 -35
  2. README.md +13 -13
  3. agents/__pycache__/agent.cpython-312.pyc +3 -0
  4. agents/__pycache__/deals.cpython-312.pyc +3 -0
  5. agents/__pycache__/ensemble_agent.cpython-312.pyc +3 -0
  6. agents/__pycache__/frontier_agent.cpython-312.pyc +3 -0
  7. agents/__pycache__/messaging_agent.cpython-312.pyc +3 -0
  8. agents/__pycache__/planning_agent.cpython-312.pyc +3 -0
  9. agents/__pycache__/random_forest_agent.cpython-312.pyc +3 -0
  10. agents/__pycache__/scanner_agent.cpython-312.pyc +3 -0
  11. agents/__pycache__/specialist_agent.cpython-312.pyc +3 -0
  12. agents/agent.py +33 -0
  13. agents/deals.py +109 -0
  14. agents/ensemble_agent.py +48 -0
  15. agents/frontier_agent.py +113 -0
  16. agents/messaging_agent.py +79 -0
  17. agents/planning_agent.py +57 -0
  18. agents/random_forest_agent.py +37 -0
  19. agents/scanner_agent.py +94 -0
  20. agents/specialist_agent.py +29 -0
  21. app.py +166 -0
  22. deal_agent_framework.py +99 -0
  23. ensemble_model.pkl +3 -0
  24. hello.py +18 -0
  25. items.py +101 -0
  26. keep_warm.py +10 -0
  27. llama.py +44 -0
  28. log_utils.py +35 -0
  29. memory.json +29 -0
  30. price_is_right.py +62 -0
  31. pricer_ephemeral.py +66 -0
  32. pricer_service.py +66 -0
  33. pricer_service2.py +90 -0
  34. products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/data_level0.bin +3 -0
  35. products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/header.bin +3 -0
  36. products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/index_metadata.pickle +3 -0
  37. products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/length.bin +3 -0
  38. products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/link_lists.bin +3 -0
  39. products_vectorstore/chroma.sqlite3 +3 -0
  40. random_forest_model.pkl +3 -0
  41. requirements.txt +0 -0
  42. test.pkl +3 -0
  43. testing.py +75 -0
.gitattributes CHANGED
@@ -1,35 +1,5 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
1
+ *.bin filter=lfs diff=lfs merge=lfs -text
2
+ *.pkl filter=lfs diff=lfs merge=lfs -text
3
+ *.sqlite3 filter=lfs diff=lfs merge=lfs -text
4
+ *.pickle filter=lfs diff=lfs merge=lfs -text
5
+ *.pyc filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,13 +1,13 @@
1
- ---
2
- title: LLM Project
3
- emoji: 🦀
4
- colorFrom: gray
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 5.15.0
8
- app_file: app.py
9
- pinned: false
10
- license: mit
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
+ ---
2
+ title: LLM Project
3
+ emoji: 🦀
4
+ colorFrom: gray
5
+ colorTo: green
6
+ sdk: gradio
7
+ sdk_version: 5.15.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
agents/__pycache__/agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e7b56519cbb8ed611dbd18c5a297044c37d0eb1e1c29bc49c9a9f5746b8a670
3
+ size 1271
agents/__pycache__/deals.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b505267d897a32a4381686ac6bed2c526b63cf35071791b6fb4d698c05b6e99a
3
+ size 5464
agents/__pycache__/ensemble_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:565d116ca19f07a045e1bbb4fe7469d840d2fe42ba6e394f0bd0e632a4c6ba48
3
+ size 2829
agents/__pycache__/frontier_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e2fcd286d807aaf6d5f644231aecc103bc4d9ff2fcc95ff533cc74d5cb7ea1
3
+ size 6735
agents/__pycache__/messaging_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dfd32738e5c5406e4d534caf2dbf109cc5fd3dc7dd1360d6089a828656378dd
3
+ size 4326
agents/__pycache__/planning_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e2d65f2706c98c5a3caa0a01f37ef448202b4f0020d6707bcaec74dbe9c64f7
3
+ size 3962
agents/__pycache__/random_forest_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b206314a37fdc3d67bd8c80fab047102b1da8a92d797bd999282183516e2a56
3
+ size 2143
agents/__pycache__/scanner_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0df3f7fcc7315118766382b793926b01d831fb006b03c2610722bf62e48b994
3
+ size 6276
agents/__pycache__/specialist_agent.cpython-312.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a25eae39b16a3aeae83c0cc38356a2bef5366058adaaaab6f2a70e5052d6ff7f
3
+ size 1804
agents/agent.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ class Agent:
4
+ """
5
+ An abstract superclass for Agents
6
+ Used to log messages in a way that can identify each Agent
7
+ """
8
+
9
+ # Foreground colors
10
+ RED = '\033[31m'
11
+ GREEN = '\033[32m'
12
+ YELLOW = '\033[33m'
13
+ BLUE = '\033[34m'
14
+ MAGENTA = '\033[35m'
15
+ CYAN = '\033[36m'
16
+ WHITE = '\033[37m'
17
+
18
+ # Background color
19
+ BG_BLACK = '\033[40m'
20
+
21
+ # Reset code to return to default color
22
+ RESET = '\033[0m'
23
+
24
+ name: str = ""
25
+ color: str = '\033[37m'
26
+
27
+ def log(self, message):
28
+ """
29
+ Log this as an info message, identifying the agent
30
+ """
31
+ color_code = self.BG_BLACK + self.color
32
+ message = f"[{self.name}] {message}"
33
+ logging.info(color_code + message + self.RESET)
agents/deals.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pydantic import BaseModel
2
+ from typing import List, Dict, Self
3
+ from bs4 import BeautifulSoup
4
+ import re
5
+ import feedparser
6
+ from tqdm import tqdm
7
+ import requests
8
+ import time
9
+
10
+ feeds = [
11
+ "https://www.dealnews.com/c142/Electronics/?rss=1",
12
+ "https://www.dealnews.com/c39/Computers/?rss=1",
13
+ "https://www.dealnews.com/c238/Automotive/?rss=1",
14
+ "https://www.dealnews.com/f1912/Smart-Home/?rss=1",
15
+ "https://www.dealnews.com/c196/Home-Garden/?rss=1",
16
+ ]
17
+
18
+ def extract(html_snippet: str) -> str:
19
+ """
20
+ Use Beautiful Soup to clean up this HTML snippet and extract useful text
21
+ """
22
+ soup = BeautifulSoup(html_snippet, 'html.parser')
23
+ snippet_div = soup.find('div', class_='snippet summary')
24
+
25
+ if snippet_div:
26
+ description = snippet_div.get_text(strip=True)
27
+ description = BeautifulSoup(description, 'html.parser').get_text()
28
+ description = re.sub('<[^<]+?>', '', description)
29
+ result = description.strip()
30
+ else:
31
+ result = html_snippet
32
+ return result.replace('\n', ' ')
33
+
34
+ class ScrapedDeal:
35
+ """
36
+ A class to represent a Deal retrieved from an RSS feed
37
+ """
38
+ category: str
39
+ title: str
40
+ summary: str
41
+ url: str
42
+ details: str
43
+ features: str
44
+
45
+ def __init__(self, entry: Dict[str, str]):
46
+ """
47
+ Populate this instance based on the provided dict
48
+ """
49
+ self.title = entry['title']
50
+ self.summary = extract(entry['summary'])
51
+ self.url = entry['links'][0]['href']
52
+ stuff = requests.get(self.url).content
53
+ soup = BeautifulSoup(stuff, 'html.parser')
54
+ content = soup.find('div', class_='content-section').get_text()
55
+ content = content.replace('\nmore', '').replace('\n', ' ')
56
+ if "Features" in content:
57
+ self.details, self.features = content.split("Features")
58
+ else:
59
+ self.details = content
60
+ self.features = ""
61
+
62
+ def __repr__(self):
63
+ """
64
+ Return a string to describe this deal
65
+ """
66
+ return f"<{self.title}>"
67
+
68
+ def describe(self):
69
+ """
70
+ Return a longer string to describe this deal for use in calling a model
71
+ """
72
+ return f"Title: {self.title}\nDetails: {self.details.strip()}\nFeatures: {self.features.strip()}\nURL: {self.url}"
73
+
74
+ @classmethod
75
+ def fetch(cls, show_progress : bool = False) -> List[Self]:
76
+ """
77
+ Retrieve all deals from the selected RSS feeds
78
+ """
79
+ deals = []
80
+ feed_iter = tqdm(feeds) if show_progress else feeds
81
+ for feed_url in feed_iter:
82
+ feed = feedparser.parse(feed_url)
83
+ for entry in feed.entries[:10]:
84
+ deals.append(cls(entry))
85
+ time.sleep(0.5)
86
+ return deals
87
+
88
+ class Deal(BaseModel):
89
+ """
90
+ A class to Represent a Deal with a summary description
91
+ """
92
+ product_description: str
93
+ price: float
94
+ url: str
95
+
96
+ class DealSelection(BaseModel):
97
+ """
98
+ A class to Represent a list of Deals
99
+ """
100
+ deals: List[Deal]
101
+
102
+ class Opportunity(BaseModel):
103
+ """
104
+ A class to represent a possible opportunity: a Deal where we estimate
105
+ it should cost more than it's being offered
106
+ """
107
+ deal: Deal
108
+ estimate: float
109
+ discount: float
agents/ensemble_agent.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.linear_model import LinearRegression
3
+ import joblib
4
+
5
+ from agents.agent import Agent
6
+ from agents.specialist_agent import SpecialistAgent
7
+ from agents.frontier_agent import FrontierAgent
8
+ from agents.random_forest_agent import RandomForestAgent
9
+
10
+ class EnsembleAgent(Agent):
11
+
12
+ name = "Ensemble Agent"
13
+ color = Agent.YELLOW
14
+
15
+ def __init__(self, collection):
16
+ """
17
+ Create an instance of Ensemble, by creating each of the models
18
+ And loading the weights of the Ensemble
19
+ """
20
+ self.log("Initializing Ensemble Agent")
21
+ self.specialist = SpecialistAgent()
22
+ self.frontier = FrontierAgent(collection)
23
+ self.random_forest = RandomForestAgent()
24
+ self.model = joblib.load('ensemble_model.pkl')
25
+ self.log("Ensemble Agent is ready")
26
+
27
+ def price(self, description: str) -> float:
28
+ """
29
+ Run this ensemble model
30
+ Ask each of the models to price the product
31
+ Then use the Linear Regression model to return the weighted price
32
+ :param description: the description of a product
33
+ :return: an estimate of its price
34
+ """
35
+ self.log("Running Ensemble Agent - collaborating with specialist, frontier and random forest agents")
36
+ specialist = self.specialist.price(description)
37
+ frontier = self.frontier.price(description)
38
+ random_forest = self.random_forest.price(description)
39
+ X = pd.DataFrame({
40
+ 'Specialist': [specialist],
41
+ 'Frontier': [frontier],
42
+ 'RandomForest': [random_forest],
43
+ 'Min': [min(specialist, frontier, random_forest)],
44
+ 'Max': [max(specialist, frontier, random_forest)],
45
+ })
46
+ y = self.model.predict(X)[0]
47
+ self.log(f"Ensemble Agent complete - returning ${y:.2f}")
48
+ return y
agents/frontier_agent.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # imports
2
+
3
+ import os
4
+ import re
5
+ import math
6
+ import json
7
+ from typing import List, Dict
8
+ from openai import OpenAI
9
+ from sentence_transformers import SentenceTransformer
10
+ from datasets import load_dataset
11
+ import chromadb
12
+ from items import Item
13
+ from testing import Tester
14
+ from agents.agent import Agent
15
+
16
+
17
+ class FrontierAgent(Agent):
18
+
19
+ name = "Frontier Agent"
20
+ color = Agent.BLUE
21
+
22
+ MODEL = "gpt-4o-mini"
23
+
24
+ def __init__(self, collection):
25
+ """
26
+ Set up this instance by connecting to OpenAI or DeepSeek, to the Chroma Datastore,
27
+ And setting up the vector encoding model
28
+ """
29
+ self.log("Initializing Frontier Agent")
30
+ deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
31
+ if deepseek_api_key:
32
+ self.client = OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com")
33
+ self.MODEL = "deepseek-chat"
34
+ self.log("Frontier Agent is set up with DeepSeek")
35
+ else:
36
+ self.client = OpenAI()
37
+ self.MODEL = "gpt-4o-mini"
38
+ self.log("Frontier Agent is setting up with OpenAI")
39
+ self.collection = collection
40
+ self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
41
+ self.log("Frontier Agent is ready")
42
+
43
+ def make_context(self, similars: List[str], prices: List[float]) -> str:
44
+ """
45
+ Create context that can be inserted into the prompt
46
+ :param similars: similar products to the one being estimated
47
+ :param prices: prices of the similar products
48
+ :return: text to insert in the prompt that provides context
49
+ """
50
+ message = "To provide some context, here are some other items that might be similar to the item you need to estimate.\n\n"
51
+ for similar, price in zip(similars, prices):
52
+ message += f"Potentially related product:\n{similar}\nPrice is ${price:.2f}\n\n"
53
+ return message
54
+
55
+ def messages_for(self, description: str, similars: List[str], prices: List[float]) -> List[Dict[str, str]]:
56
+ """
57
+ Create the message list to be included in a call to OpenAI
58
+ With the system and user prompt
59
+ :param description: a description of the product
60
+ :param similars: similar products to this one
61
+ :param prices: prices of similar products
62
+ :return: the list of messages in the format expected by OpenAI
63
+ """
64
+ system_message = "You estimate prices of items. Reply only with the price, no explanation"
65
+ user_prompt = self.make_context(similars, prices)
66
+ user_prompt += "And now the question for you:\n\n"
67
+ user_prompt += "How much does this cost?\n\n" + description
68
+ return [
69
+ {"role": "system", "content": system_message},
70
+ {"role": "user", "content": user_prompt},
71
+ {"role": "assistant", "content": "Price is $"}
72
+ ]
73
+
74
+ def find_similars(self, description: str):
75
+ """
76
+ Return a list of items similar to the given one by looking in the Chroma datastore
77
+ """
78
+ self.log("Frontier Agent is performing a RAG search of the Chroma datastore to find 5 similar products")
79
+ vector = self.model.encode([description])
80
+ results = self.collection.query(query_embeddings=vector.astype(float).tolist(), n_results=5)
81
+ documents = results['documents'][0][:]
82
+ prices = [m['price'] for m in results['metadatas'][0][:]]
83
+ self.log("Frontier Agent has found similar products")
84
+ return documents, prices
85
+
86
+ def get_price(self, s) -> float:
87
+ """
88
+ A utility that plucks a floating point number out of a string
89
+ """
90
+ s = s.replace('$','').replace(',','')
91
+ match = re.search(r"[-+]?\d*\.\d+|\d+", s)
92
+ return float(match.group()) if match else 0.0
93
+
94
+ def price(self, description: str) -> float:
95
+ """
96
+ Make a call to OpenAI or DeepSeek to estimate the price of the described product,
97
+ by looking up 5 similar products and including them in the prompt to give context
98
+ :param description: a description of the product
99
+ :return: an estimate of the price
100
+ """
101
+ documents, prices = self.find_similars(description)
102
+ self.log(f"Frontier Agent is about to call {self.MODEL} with context including 5 similar products")
103
+ response = self.client.chat.completions.create(
104
+ model=self.MODEL,
105
+ messages=self.messages_for(description, documents, prices),
106
+ seed=42,
107
+ max_tokens=5
108
+ )
109
+ reply = response.choices[0].message.content
110
+ result = self.get_price(reply)
111
+ self.log(f"Frontier Agent completed - predicting ${result:.2f}")
112
+ return result
113
+
agents/messaging_agent.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ # from twilio.rest import Client
3
+ from agents.deals import Opportunity
4
+ import http.client
5
+ import urllib
6
+ from agents.agent import Agent
7
+
8
+ # Uncomment the Twilio lines if you wish to use Twilio
9
+
10
+ DO_TEXT = False
11
+ DO_PUSH = True
12
+
13
+ class MessagingAgent(Agent):
14
+
15
+ name = "Messaging Agent"
16
+ color = Agent.WHITE
17
+
18
+ def __init__(self):
19
+ """
20
+ Set up this object to either do push notifications via Pushover,
21
+ or SMS via Twilio,
22
+ whichever is specified in the constants
23
+ """
24
+ self.log(f"Messaging Agent is initializing")
25
+ if DO_TEXT:
26
+ account_sid = os.getenv('TWILIO_ACCOUNT_SID', 'your-sid-if-not-using-env')
27
+ auth_token = os.getenv('TWILIO_AUTH_TOKEN', 'your-auth-if-not-using-env')
28
+ self.me_from = os.getenv('TWILIO_FROM', 'your-phone-number-if-not-using-env')
29
+ self.me_to = os.getenv('MY_PHONE_NUMBER', 'your-phone-number-if-not-using-env')
30
+ # self.client = Client(account_sid, auth_token)
31
+ self.log("Messaging Agent has initialized Twilio")
32
+ if DO_PUSH:
33
+ self.pushover_user = os.getenv('PUSHOVER_USER', 'your-pushover-user-if-not-using-env')
34
+ self.pushover_token = os.getenv('PUSHOVER_TOKEN', 'your-pushover-user-if-not-using-env')
35
+ self.log("Messaging Agent has initialized Pushover")
36
+
37
+ def message(self, text):
38
+ """
39
+ Send an SMS message using the Twilio API
40
+ """
41
+ self.log("Messaging Agent is sending a text message")
42
+ message = self.client.messages.create(
43
+ from_=self.me_from,
44
+ body=text,
45
+ to=self.me_to
46
+ )
47
+
48
+ def push(self, text):
49
+ """
50
+ Send a Push Notification using the Pushover API
51
+ """
52
+ self.log("Messaging Agent is sending a push notification")
53
+ conn = http.client.HTTPSConnection("api.pushover.net:443")
54
+ conn.request("POST", "/1/messages.json",
55
+ urllib.parse.urlencode({
56
+ "token": self.pushover_token,
57
+ "user": self.pushover_user,
58
+ "message": text,
59
+ "sound": "cashregister"
60
+ }), { "Content-type": "application/x-www-form-urlencoded" })
61
+ conn.getresponse()
62
+
63
+ def alert(self, opportunity: Opportunity):
64
+ """
65
+ Make an alert about the specified Opportunity
66
+ """
67
+ text = f"Deal Alert! Price=${opportunity.deal.price:.2f}, "
68
+ text += f"Estimate=${opportunity.estimate:.2f}, "
69
+ text += f"Discount=${opportunity.discount:.2f} :"
70
+ text += opportunity.deal.product_description[:10]+'... '
71
+ text += opportunity.deal.url
72
+ if DO_TEXT:
73
+ self.message(text)
74
+ if DO_PUSH:
75
+ self.push(text)
76
+ self.log("Messaging Agent has completed")
77
+
78
+
79
+
agents/planning_agent.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, List
2
+ from agents.agent import Agent
3
+ from agents.deals import ScrapedDeal, DealSelection, Deal, Opportunity
4
+ from agents.scanner_agent import ScannerAgent
5
+ from agents.ensemble_agent import EnsembleAgent
6
+ from agents.messaging_agent import MessagingAgent
7
+
8
+
9
+ class PlanningAgent(Agent):
10
+
11
+ name = "Planning Agent"
12
+ color = Agent.GREEN
13
+ DEAL_THRESHOLD = 50
14
+
15
+ def __init__(self, collection):
16
+ """
17
+ Create instances of the 3 Agents that this planner coordinates across
18
+ """
19
+ self.log("Planning Agent is initializing")
20
+ self.scanner = ScannerAgent()
21
+ self.ensemble = EnsembleAgent(collection)
22
+ self.messenger = MessagingAgent()
23
+ self.log("Planning Agent is ready")
24
+
25
+ def run(self, deal: Deal) -> Opportunity:
26
+ """
27
+ Run the workflow for a particular deal
28
+ :param deal: the deal, summarized from an RSS scrape
29
+ :returns: an opportunity including the discount
30
+ """
31
+ self.log("Planning Agent is pricing up a potential deal")
32
+ estimate = self.ensemble.price(deal.product_description)
33
+ discount = estimate - deal.price
34
+ self.log(f"Planning Agent has processed a deal with discount ${discount:.2f}")
35
+ return Opportunity(deal=deal, estimate=estimate, discount=discount)
36
+
37
+ def plan(self, memory: List[str] = []) -> Optional[Opportunity]:
38
+ """
39
+ Run the full workflow:
40
+ 1. Use the ScannerAgent to find deals from RSS feeds
41
+ 2. Use the EnsembleAgent to estimate them
42
+ 3. Use the MessagingAgent to send a notification of deals
43
+ :param memory: a list of URLs that have been surfaced in the past
44
+ :return: an Opportunity if one was surfaced, otherwise None
45
+ """
46
+ self.log("Planning Agent is kicking off a run")
47
+ selection = self.scanner.scan(memory=memory)
48
+ if selection:
49
+ opportunities = [self.run(deal) for deal in selection.deals[:5]]
50
+ opportunities.sort(key=lambda opp: opp.discount, reverse=True)
51
+ best = opportunities[0]
52
+ self.log(f"Planning Agent has identified the best deal has discount ${best.discount:.2f}")
53
+ if best.discount > self.DEAL_THRESHOLD:
54
+ self.messenger.alert(best)
55
+ self.log("Planning Agent has completed a run")
56
+ return best if best.discount > self.DEAL_THRESHOLD else None
57
+ return None
agents/random_forest_agent.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # imports
2
+
3
+ import os
4
+ import re
5
+ from typing import List
6
+ from sentence_transformers import SentenceTransformer
7
+ import joblib
8
+ from agents.agent import Agent
9
+
10
+
11
+
12
+ class RandomForestAgent(Agent):
13
+
14
+ name = "Random Forest Agent"
15
+ color = Agent.MAGENTA
16
+
17
+ def __init__(self):
18
+ """
19
+ Initialize this object by loading in the saved model weights
20
+ and the SentenceTransformer vector encoding model
21
+ """
22
+ self.log("Random Forest Agent is initializing")
23
+ self.vectorizer = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
24
+ self.model = joblib.load('random_forest_model.pkl')
25
+ self.log("Random Forest Agent is ready")
26
+
27
+ def price(self, description: str) -> float:
28
+ """
29
+ Use a Random Forest model to estimate the price of the described item
30
+ :param description: the product to be estimated
31
+ :return: the price as a float
32
+ """
33
+ self.log("Random Forest Agent is starting a prediction")
34
+ vector = self.vectorizer.encode([description])
35
+ result = max(0, self.model.predict(vector)[0])
36
+ self.log(f"Random Forest Agent completed - predicting ${result:.2f}")
37
+ return result
agents/scanner_agent.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from typing import Optional, List
4
+ from openai import OpenAI
5
+ from agents.deals import ScrapedDeal, DealSelection
6
+ from agents.agent import Agent
7
+
8
+
9
+ class ScannerAgent(Agent):
10
+
11
+ MODEL = "gpt-4o-mini"
12
+
13
+ SYSTEM_PROMPT = """You identify and summarize the 5 most detailed deals from a list, by selecting deals that have the most detailed, high quality description and the most clear price.
14
+ Respond strictly in JSON with no explanation, using this format. You should provide the price as a number derived from the description. If the price of a deal isn't clear, do not include that deal in your response.
15
+ Most important is that you respond with the 5 deals that have the most detailed product description with price. It's not important to mention the terms of the deal; most important is a thorough description of the product.
16
+ Be careful with products that are described as "$XXX off" or "reduced by $XXX" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price.
17
+
18
+ {"deals": [
19
+ {
20
+ "product_description": "Your clearly expressed summary of the product in 4-5 sentences. Details of the item are much more important than why it's a good deal. Avoid mentioning discounts and coupons; focus on the item itself. There should be a paragpraph of text for each item you choose.",
21
+ "price": 99.99,
22
+ "url": "the url as provided"
23
+ },
24
+ ...
25
+ ]}"""
26
+
27
+ USER_PROMPT_PREFIX = """Respond with the most promising 5 deals from this list, selecting those which have the most detailed, high quality product description and a clear price that is greater than 0.
28
+ Respond strictly in JSON, and only JSON. You should rephrase the description to be a summary of the product itself, not the terms of the deal.
29
+ Remember to respond with a paragraph of text in the product_description field for each of the 5 items that you select.
30
+ Be careful with products that are described as "$XXX off" or "reduced by $XXX" - this isn't the actual price of the product. Only respond with products when you are highly confident about the price.
31
+
32
+ Deals:
33
+
34
+ """
35
+
36
+ USER_PROMPT_SUFFIX = "\n\nStrictly respond in JSON and include exactly 5 deals, no more."
37
+
38
+ name = "Scanner Agent"
39
+ color = Agent.CYAN
40
+
41
+ def __init__(self):
42
+ """
43
+ Set up this instance by initializing OpenAI
44
+ """
45
+ self.log("Scanner Agent is initializing")
46
+ self.openai = OpenAI()
47
+ self.log("Scanner Agent is ready")
48
+
49
+ def fetch_deals(self, memory) -> List[ScrapedDeal]:
50
+ """
51
+ Look up deals published on RSS feeds
52
+ Return any new deals that are not already in the memory provided
53
+ """
54
+ self.log("Scanner Agent is about to fetch deals from RSS feed")
55
+ urls = [opp.deal.url for opp in memory]
56
+ scraped = ScrapedDeal.fetch()
57
+ result = [scrape for scrape in scraped if scrape.url not in urls]
58
+ self.log(f"Scanner Agent received {len(result)} deals not already scraped")
59
+ return result
60
+
61
+ def make_user_prompt(self, scraped) -> str:
62
+ """
63
+ Create a user prompt for OpenAI based on the scraped deals provided
64
+ """
65
+ user_prompt = self.USER_PROMPT_PREFIX
66
+ user_prompt += '\n\n'.join([scrape.describe() for scrape in scraped])
67
+ user_prompt += self.USER_PROMPT_SUFFIX
68
+ return user_prompt
69
+
70
+ def scan(self, memory: List[str]=[]) -> Optional[DealSelection]:
71
+ """
72
+ Call OpenAI to provide a high potential list of deals with good descriptions and prices
73
+ Use StructuredOutputs to ensure it conforms to our specifications
74
+ :param memory: a list of URLs representing deals already raised
75
+ :return: a selection of good deals, or None if there aren't any
76
+ """
77
+ scraped = self.fetch_deals(memory)
78
+ if scraped:
79
+ user_prompt = self.make_user_prompt(scraped)
80
+ self.log("Scanner Agent is calling OpenAI using Structured Output")
81
+ result = self.openai.beta.chat.completions.parse(
82
+ model=self.MODEL,
83
+ messages=[
84
+ {"role": "system", "content": self.SYSTEM_PROMPT},
85
+ {"role": "user", "content": user_prompt}
86
+ ],
87
+ response_format=DealSelection
88
+ )
89
+ result = result.choices[0].message.parsed
90
+ result.deals = [deal for deal in result.deals if deal.price>0]
91
+ self.log(f"Scanner Agent received {len(result.deals)} selected deals with price>0 from OpenAI")
92
+ return result
93
+ return None
94
+
agents/specialist_agent.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from agents.agent import Agent
3
+
4
+
5
+ class SpecialistAgent(Agent):
6
+ """
7
+ An Agent that runs our fine-tuned LLM that's running remotely on Modal
8
+ """
9
+
10
+ name = "Specialist Agent"
11
+ color = Agent.RED
12
+
13
+ def __init__(self):
14
+ """
15
+ Set up this Agent by creating an instance of the modal class
16
+ """
17
+ self.log("Specialist Agent is initializing - connecting to modal")
18
+ Pricer = modal.Cls.lookup("pricer-service", "Pricer")
19
+ self.pricer = Pricer()
20
+ self.log("Specialist Agent is ready")
21
+
22
+ def price(self, description: str) -> float:
23
+ """
24
+ Make a remote call to return the estimate of the price of this item
25
+ """
26
+ self.log("Specialist Agent is calling remote fine-tuned model")
27
+ result = self.pricer.price.remote(description)
28
+ self.log(f"Specialist Agent completed - predicting ${result:.2f}")
29
+ return result
app.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import queue
3
+ import threading
4
+ import time
5
+ import gradio as gr
6
+ from deal_agent_framework import DealAgentFramework
7
+ from agents.deals import Opportunity, Deal
8
+ from log_utils import reformat
9
+ import plotly.graph_objects as go
10
+
11
+
12
+ class QueueHandler(logging.Handler):
13
+ def __init__(self, log_queue):
14
+ super().__init__()
15
+ self.log_queue = log_queue
16
+
17
+ def emit(self, record):
18
+ self.log_queue.put(self.format(record))
19
+
20
+ def html_for(log_data):
21
+ output = '<br>'.join(log_data[-18:])
22
+ return f"""
23
+ <div id="scrollContent" style="height: 400px; overflow-y: auto; border: 1px solid #ccc; background-color: #222229; padding: 10px;">
24
+ {output}
25
+ </div>
26
+ """
27
+
28
+ def setup_logging(log_queue):
29
+ handler = QueueHandler(log_queue)
30
+ formatter = logging.Formatter(
31
+ "[%(asctime)s] %(message)s",
32
+ datefmt="%Y-%m-%d %H:%M:%S %z",
33
+ )
34
+ handler.setFormatter(formatter)
35
+ logger = logging.getLogger()
36
+ logger.addHandler(handler)
37
+ logger.setLevel(logging.INFO)
38
+
39
+
40
+ class App:
41
+
42
+ def __init__(self):
43
+ self.agent_framework = None
44
+
45
+ def get_agent_framework(self):
46
+ if not self.agent_framework:
47
+ self.agent_framework = DealAgentFramework()
48
+ self.agent_framework.init_agents_as_needed()
49
+ return self.agent_framework
50
+
51
+ def run(self):
52
+ with gr.Blocks(title="The Price is Right", fill_width=True) as ui:
53
+
54
+ log_data = gr.State([])
55
+
56
+ def table_for(opps):
57
+ return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps]
58
+
59
+ def update_output(log_data, log_queue, result_queue):
60
+ initial_result = table_for(self.get_agent_framework().memory)
61
+ final_result = None
62
+ while True:
63
+ try:
64
+ message = log_queue.get_nowait()
65
+ log_data.append(reformat(message))
66
+ yield log_data, html_for(log_data), final_result or initial_result
67
+ except queue.Empty:
68
+ try:
69
+ final_result = result_queue.get_nowait()
70
+ yield log_data, html_for(log_data), final_result or initial_result
71
+ except queue.Empty:
72
+ if final_result is not None:
73
+ break
74
+ time.sleep(0.1)
75
+
76
+ def get_initial_plot():
77
+ fig = go.Figure()
78
+ fig.update_layout(
79
+ title='Loading vector DB...',
80
+ height=400,
81
+ )
82
+ return fig
83
+
84
+ def get_plot():
85
+ documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000)
86
+ # Create the 3D scatter plot
87
+ fig = go.Figure(data=[go.Scatter3d(
88
+ x=vectors[:, 0],
89
+ y=vectors[:, 1],
90
+ z=vectors[:, 2],
91
+ mode='markers',
92
+ marker=dict(size=2, color=colors, opacity=0.7),
93
+ )])
94
+
95
+ fig.update_layout(
96
+ scene=dict(xaxis_title='x',
97
+ yaxis_title='y',
98
+ zaxis_title='z',
99
+ aspectmode='manual',
100
+ aspectratio=dict(x=2.2, y=2.2, z=1), # Make x-axis twice as long
101
+ camera=dict(
102
+ eye=dict(x=1.6, y=1.6, z=0.8) # Adjust camera position
103
+ )),
104
+ height=400,
105
+ margin=dict(r=5, b=1, l=5, t=2)
106
+ )
107
+
108
+ return fig
109
+
110
+ def do_run():
111
+ new_opportunities = self.get_agent_framework().run()
112
+ table = table_for(new_opportunities)
113
+ return table
114
+
115
+ def run_with_logging(initial_log_data):
116
+ log_queue = queue.Queue()
117
+ result_queue = queue.Queue()
118
+ setup_logging(log_queue)
119
+
120
+ def worker():
121
+ result = do_run()
122
+ result_queue.put(result)
123
+
124
+ thread = threading.Thread(target=worker)
125
+ thread.start()
126
+
127
+ for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue):
128
+ yield log_data, output, final_result
129
+
130
+ def do_select(selected_index: gr.SelectData):
131
+ opportunities = self.get_agent_framework().memory
132
+ row = selected_index.index[0]
133
+ opportunity = opportunities[row]
134
+ self.get_agent_framework().planner.messenger.alert(opportunity)
135
+
136
+ with gr.Row():
137
+ gr.Markdown('<div style="text-align: center;font-size:24px"><strong>The Price is Right</strong> - Autonomous Agent Framework that hunts for deals</div>')
138
+ with gr.Row():
139
+ gr.Markdown('<div style="text-align: center;font-size:14px">A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.</div>')
140
+ with gr.Row():
141
+ opportunities_dataframe = gr.Dataframe(
142
+ headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"],
143
+ wrap=True,
144
+ column_widths=[6, 1, 1, 1, 3],
145
+ row_count=10,
146
+ col_count=5,
147
+ max_height=400,
148
+ )
149
+ with gr.Row():
150
+ with gr.Column(scale=1):
151
+ logs = gr.HTML()
152
+ with gr.Column(scale=1):
153
+ plot = gr.Plot(value=get_plot(), show_label=False)
154
+
155
+ ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
156
+
157
+ timer = gr.Timer(value=300, active=True)
158
+ timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
159
+
160
+ opportunities_dataframe.select(do_select)
161
+
162
+ ui.launch(share=False, inbrowser=True)
163
+
164
+ if __name__=="__main__":
165
+ App().run()
166
+
deal_agent_framework.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import logging
4
+ import json
5
+ from typing import List, Optional
6
+ # from twilio.rest import Client
7
+ from dotenv import load_dotenv
8
+ import chromadb
9
+ from agents.planning_agent import PlanningAgent
10
+ from agents.deals import Opportunity
11
+ from sklearn.manifold import TSNE
12
+ import numpy as np
13
+
14
+
15
+ # Colors for logging
16
+ BG_BLUE = '\033[44m'
17
+ WHITE = '\033[37m'
18
+ RESET = '\033[0m'
19
+
20
+ # Colors for plot
21
+ CATEGORIES = ['Appliances', 'Automotive', 'Cell_Phones_and_Accessories', 'Electronics','Musical_Instruments', 'Office_Products', 'Tools_and_Home_Improvement', 'Toys_and_Games']
22
+ COLORS = ['red', 'blue', 'brown', 'orange', 'yellow', 'green' , 'purple', 'cyan']
23
+
24
+ def init_logging():
25
+ root = logging.getLogger()
26
+ root.setLevel(logging.INFO)
27
+
28
+ handler = logging.StreamHandler(sys.stdout)
29
+ handler.setLevel(logging.INFO)
30
+ formatter = logging.Formatter(
31
+ "[%(asctime)s] [Agents] [%(levelname)s] %(message)s",
32
+ datefmt="%Y-%m-%d %H:%M:%S %z",
33
+ )
34
+ handler.setFormatter(formatter)
35
+ root.addHandler(handler)
36
+
37
+ class DealAgentFramework:
38
+
39
+ DB = "products_vectorstore"
40
+ MEMORY_FILENAME = "memory.json"
41
+
42
+ def __init__(self):
43
+ init_logging()
44
+ load_dotenv()
45
+ client = chromadb.PersistentClient(path=self.DB)
46
+ self.memory = self.read_memory()
47
+ self.collection = client.get_or_create_collection('products')
48
+ self.planner = None
49
+
50
+ def init_agents_as_needed(self):
51
+ if not self.planner:
52
+ self.log("Initializing Agent Framework")
53
+ self.planner = PlanningAgent(self.collection)
54
+ self.log("Agent Framework is ready")
55
+
56
+ def read_memory(self) -> List[Opportunity]:
57
+ if os.path.exists(self.MEMORY_FILENAME):
58
+ with open(self.MEMORY_FILENAME, "r") as file:
59
+ data = json.load(file)
60
+ opportunities = [Opportunity(**item) for item in data]
61
+ return opportunities
62
+ return []
63
+
64
+ def write_memory(self) -> None:
65
+ data = [opportunity.dict() for opportunity in self.memory]
66
+ with open(self.MEMORY_FILENAME, "w") as file:
67
+ json.dump(data, file, indent=2)
68
+
69
+ def log(self, message: str):
70
+ text = BG_BLUE + WHITE + "[Agent Framework] " + message + RESET
71
+ logging.info(text)
72
+
73
+ def run(self) -> List[Opportunity]:
74
+ self.init_agents_as_needed()
75
+ logging.info("Kicking off Planning Agent")
76
+ result = self.planner.plan(memory=self.memory)
77
+ logging.info(f"Planning Agent has completed and returned: {result}")
78
+ if result:
79
+ self.memory.append(result)
80
+ self.write_memory()
81
+ return self.memory
82
+
83
+ @classmethod
84
+ def get_plot_data(cls, max_datapoints=10000):
85
+ client = chromadb.PersistentClient(path=cls.DB)
86
+ collection = client.get_or_create_collection('products')
87
+ result = collection.get(include=['embeddings', 'documents', 'metadatas'], limit=max_datapoints)
88
+ vectors = np.array(result['embeddings'])
89
+ documents = result['documents']
90
+ categories = [metadata['category'] for metadata in result['metadatas']]
91
+ colors = [COLORS[CATEGORIES.index(c)] for c in categories]
92
+ tsne = TSNE(n_components=3, random_state=42, n_jobs=-1)
93
+ reduced_vectors = tsne.fit_transform(vectors)
94
+ return documents, reduced_vectors, colors
95
+
96
+
97
+ if __name__=="__main__":
98
+ DealAgentFramework().run()
99
+
ensemble_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ea0ada33938b007f0489526c70ba8ff1268e743477fbe9e4201857cf7ea471
3
+ size 976
hello.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from modal import App, Image
3
+
4
+ # Setup
5
+
6
+ app = modal.App("hello")
7
+ image = Image.debian_slim().pip_install("requests")
8
+
9
+ # Hello!
10
+
11
+ @app.function(image=image)
12
+ def hello() -> str:
13
+ import requests
14
+
15
+ response = requests.get('https://ipinfo.io/json')
16
+ data = response.json()
17
+ city, region, country = data['city'], data['region'], data['country']
18
+ return f"Hello from {city}, {region}, {country}!!"
items.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional
2
+ from transformers import AutoTokenizer
3
+ import re
4
+
5
+ BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
6
+ MIN_TOKENS = 150
7
+ MAX_TOKENS = 160
8
+ MIN_CHARS = 300
9
+ CEILING_CHARS = MAX_TOKENS * 7
10
+
11
+ class Item:
12
+ """
13
+ An Item is a cleaned, curated datapoint of a Product with a Price
14
+ """
15
+
16
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, trust_remote_code=True)
17
+ PREFIX = "Price is $"
18
+ QUESTION = "How much does this cost to the nearest dollar?"
19
+ REMOVALS = ['"Batteries Included?": "No"', '"Batteries Included?": "Yes"', '"Batteries Required?": "No"', '"Batteries Required?": "Yes"', "By Manufacturer", "Item", "Date First", "Package", ":", "Number of", "Best Sellers", "Number", "Product "]
20
+
21
+ title: str
22
+ price: float
23
+ category: str
24
+ token_count: int = 0
25
+ details: Optional[str]
26
+ prompt: Optional[str] = None
27
+ include = False
28
+
29
+ def __init__(self, data, price):
30
+ self.title = data['title']
31
+ self.price = price
32
+ self.parse(data)
33
+
34
+ def scrub_details(self):
35
+ """
36
+ Clean up the details string by removing common text that doesn't add value
37
+ """
38
+ details = self.details
39
+ for remove in self.REMOVALS:
40
+ details = details.replace(remove, "")
41
+ return details
42
+
43
+ def scrub(self, stuff):
44
+ """
45
+ Clean up the provided text by removing unnecessary characters and whitespace
46
+ Also remove words that are 7+ chars and contain numbers, as these are likely irrelevant product numbers
47
+ """
48
+ stuff = re.sub(r'[:\[\]"{}【】\s]+', ' ', stuff).strip()
49
+ stuff = stuff.replace(" ,", ",").replace(",,,",",").replace(",,",",")
50
+ words = stuff.split(' ')
51
+ select = [word for word in words if len(word)<7 or not any(char.isdigit() for char in word)]
52
+ return " ".join(select)
53
+
54
+ def parse(self, data):
55
+ """
56
+ Parse this datapoint and if it fits within the allowed Token range,
57
+ then set include to True
58
+ """
59
+ contents = '\n'.join(data['description'])
60
+ if contents:
61
+ contents += '\n'
62
+ features = '\n'.join(data['features'])
63
+ if features:
64
+ contents += features + '\n'
65
+ self.details = data['details']
66
+ if self.details:
67
+ contents += self.scrub_details() + '\n'
68
+ if len(contents) > MIN_CHARS:
69
+ contents = contents[:CEILING_CHARS]
70
+ text = f"{self.scrub(self.title)}\n{self.scrub(contents)}"
71
+ tokens = self.tokenizer.encode(text, add_special_tokens=False)
72
+ if len(tokens) > MIN_TOKENS:
73
+ tokens = tokens[:MAX_TOKENS]
74
+ text = self.tokenizer.decode(tokens)
75
+ self.make_prompt(text)
76
+ self.include = True
77
+
78
+ def make_prompt(self, text):
79
+ """
80
+ Set the prompt instance variable to be a prompt appropriate for training
81
+ """
82
+ self.prompt = f"{self.QUESTION}\n\n{text}\n\n"
83
+ self.prompt += f"{self.PREFIX}{str(round(self.price))}.00"
84
+ self.token_count = len(self.tokenizer.encode(self.prompt, add_special_tokens=False))
85
+
86
+ def test_prompt(self):
87
+ """
88
+ Return a prompt suitable for testing, with the actual price removed
89
+ """
90
+ return self.prompt.split(self.PREFIX)[0] + self.PREFIX
91
+
92
+ def __repr__(self):
93
+ """
94
+ Return a String version of this Item
95
+ """
96
+ return f"<{self.title} = ${self.price}>"
97
+
98
+
99
+
100
+
101
+
keep_warm.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import modal
3
+ from datetime import datetime
4
+
5
+ Pricer = modal.Cls.lookup("pricer-service", "Pricer")
6
+ pricer = Pricer()
7
+ while True:
8
+ reply = pricer.wake_up.remote()
9
+ print(f"{datetime.now()}: {reply}")
10
+ time.sleep(30)
llama.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from modal import App, Volume, Image
3
+
4
+ # Setup
5
+
6
+ app = modal.App("llama")
7
+ image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate")
8
+ secrets = [modal.Secret.from_name("hf-secret")]
9
+ GPU = "T4"
10
+ MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B" # "google/gemma-2-2b"
11
+
12
+
13
+
14
+ @app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800)
15
+ def generate(prompt: str) -> str:
16
+ import os
17
+ import torch
18
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
19
+
20
+ # Quant Config
21
+ quant_config = BitsAndBytesConfig(
22
+ load_in_4bit=True,
23
+ bnb_4bit_use_double_quant=True,
24
+ bnb_4bit_compute_dtype=torch.bfloat16,
25
+ bnb_4bit_quant_type="nf4"
26
+ )
27
+
28
+ # Load model and tokenizer
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
31
+ tokenizer.pad_token = tokenizer.eos_token
32
+ tokenizer.padding_side = "right"
33
+
34
+ model = AutoModelForCausalLM.from_pretrained(
35
+ MODEL_NAME,
36
+ quantization_config=quant_config,
37
+ device_map="auto"
38
+ )
39
+
40
+ set_seed(42)
41
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
42
+ attention_mask = torch.ones(inputs.shape, device="cuda")
43
+ outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
44
+ return tokenizer.decode(outputs[0])
log_utils.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Foreground colors
2
+ RED = '\033[31m'
3
+ GREEN = '\033[32m'
4
+ YELLOW = '\033[33m'
5
+ BLUE = '\033[34m'
6
+ MAGENTA = '\033[35m'
7
+ CYAN = '\033[36m'
8
+ WHITE = '\033[37m'
9
+
10
+ # Background color
11
+ BG_BLACK = '\033[40m'
12
+ BG_BLUE = '\033[44m'
13
+
14
+ # Reset code to return to default color
15
+ RESET = '\033[0m'
16
+
17
+ mapper = {
18
+ BG_BLACK+RED: "#dd0000",
19
+ BG_BLACK+GREEN: "#00dd00",
20
+ BG_BLACK+YELLOW: "#dddd00",
21
+ BG_BLACK+BLUE: "#0000ee",
22
+ BG_BLACK+MAGENTA: "#aa00dd",
23
+ BG_BLACK+CYAN: "#00dddd",
24
+ BG_BLACK+WHITE: "#87CEEB",
25
+ BG_BLUE+WHITE: "#ff7800"
26
+ }
27
+
28
+
29
+ def reformat(message):
30
+ for key, value in mapper.items():
31
+ message = message.replace(key, f'<span style="color: {value}">')
32
+ message = message.replace(RESET, '</span>')
33
+ return message
34
+
35
+
memory.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "deal": {
4
+ "product_description": "The Samsung Galaxy Watch Ultra is a premium 47mm LTE Titanium smartwatch designed for both style and functionality. It features a circular display made with durable materials suitable for outdoor activities, providing GPS tracking, health monitoring, and custom apps for various needs. The robust design integrates a range of smart features including notifications, music control, and heart rate tracking, making it an ideal companion for fitness enthusiasts and tech-savvy users alike.",
5
+ "price": 350.0,
6
+ "url": "https://www.dealnews.com/Samsung-Galaxy-Watch-Ultra-47-mm-LTE-Titanium-Smartwatch-up-to-350-off-w-Trade-in-free-shipping/21663266.html?iref=rss-c142"
7
+ },
8
+ "estimate": 773.8138460593241,
9
+ "discount": 423.8138460593241
10
+ },
11
+ {
12
+ "deal": {
13
+ "product_description": "The Refurbished Unlocked Apple iPhone 14 Pro Max offers an impressive 256GB storage and a huge display, perfect for both media consumption and productivity. Enjoy advanced camera technology for stunning photos. This model is designed to provide a seamless user experience with 5G capabilities for faster downloads and streaming. Refurbished to high standards, it comes in various colors and can support all the latest apps from the App Store, accommodating any Apple enthusiast's needs.",
14
+ "price": 705.0,
15
+ "url": "https://www.dealnews.com/products/Apple/Unlocked-Apple-iPhone-14-Pro-Max-256-GB-Smartphone/462808.html?iref=rss-c142"
16
+ },
17
+ "estimate": 930.8824204895075,
18
+ "discount": 225.88242048950747
19
+ },
20
+ {
21
+ "deal": {
22
+ "product_description": "The Certified Refurb ViewSonic WXGA DLP HDMI Projector offers a maximum resolution of 1280x800 and a high brightness of 3600 Lumens, making it suitable for various settings including home theaters and business presentations. It features multiple input options including HDMI, composite video, and two VGA inputs for versatile connectivity. Being a certified refurbished unit, it comes with a two-year warranty from Allstate, ensuring reliability and peace of mind for users. This projector is designed to deliver sharp and vibrant images, perfect for both entertainment and professional use.",
23
+ "price": 160.0,
24
+ "url": "https://www.dealnews.com/products/View-Sonic/View-Sonic-WXGA-DLP-HDMI-Projector/486990.html?iref=rss-c39"
25
+ },
26
+ "estimate": 572.7903759232101,
27
+ "discount": 412.79037592321015
28
+ }
29
+ ]
price_is_right.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from deal_agent_framework import DealAgentFramework
3
+ from agents.deals import Opportunity, Deal
4
+
5
+ class App:
6
+
7
+ def __init__(self):
8
+ self.agent_framework = None
9
+
10
+ def run(self):
11
+ with gr.Blocks(title="The Price is Right", fill_width=True) as ui:
12
+
13
+ def table_for(opps):
14
+ return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps]
15
+
16
+ def start():
17
+ self.agent_framework = DealAgentFramework()
18
+ self.agent_framework.init_agents_as_needed()
19
+ opportunities = self.agent_framework.memory
20
+ table = table_for(opportunities)
21
+ return table
22
+
23
+ def go():
24
+ self.agent_framework.run()
25
+ new_opportunities = self.agent_framework.memory
26
+ table = table_for(new_opportunities)
27
+ return table
28
+
29
+ def do_select(selected_index: gr.SelectData):
30
+ opportunities = self.agent_framework.memory
31
+ row = selected_index.index[0]
32
+ opportunity = opportunities[row]
33
+ self.agent_framework.planner.messenger.alert(opportunity)
34
+
35
+ with gr.Row():
36
+ gr.Markdown('<div style="text-align: center;font-size:24px">"The Price is Right" - Deal Hunting Agentic AI</div>')
37
+ with gr.Row():
38
+ gr.Markdown('<div style="text-align: center;font-size:14px">Autonomous agent framework that finds online deals, collaborating with a proprietary fine-tuned LLM deployed on Modal, and a RAG pipeline with a frontier model and Chroma.</div>')
39
+ with gr.Row():
40
+ gr.Markdown('<div style="text-align: center;font-size:14px">Deals surfaced so far:</div>')
41
+ with gr.Row():
42
+ opportunities_dataframe = gr.Dataframe(
43
+ headers=["Description", "Price", "Estimate", "Discount", "URL"],
44
+ wrap=True,
45
+ column_widths=[4, 1, 1, 1, 2],
46
+ row_count=10,
47
+ col_count=5,
48
+ max_height=400,
49
+ )
50
+
51
+ ui.load(start, inputs=[], outputs=[opportunities_dataframe])
52
+
53
+ timer = gr.Timer(value=60)
54
+ timer.tick(go, inputs=[], outputs=[opportunities_dataframe])
55
+
56
+ opportunities_dataframe.select(do_select)
57
+
58
+ ui.launch(share=False, inbrowser=True)
59
+
60
+ if __name__=="__main__":
61
+ App().run()
62
+
pricer_ephemeral.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from modal import App, Image
3
+
4
+ # Setup
5
+
6
+ app = modal.App("pricer")
7
+ image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate", "peft")
8
+ secrets = [modal.Secret.from_name("hf-secret")]
9
+
10
+ # Constants
11
+
12
+ GPU = "T4"
13
+ BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
14
+ PROJECT_NAME = "pricer"
15
+ HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results.
16
+ RUN_NAME = "2024-09-13_13.04.39"
17
+ PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}"
18
+ REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36"
19
+ FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}"
20
+
21
+
22
+ @app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800)
23
+ def price(description: str) -> float:
24
+ import os
25
+ import re
26
+ import torch
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
28
+ from peft import PeftModel
29
+
30
+ QUESTION = "How much does this cost to the nearest dollar?"
31
+ PREFIX = "Price is $"
32
+
33
+ prompt = f"{QUESTION}\n{description}\n{PREFIX}"
34
+
35
+ # Quant Config
36
+ quant_config = BitsAndBytesConfig(
37
+ load_in_4bit=True,
38
+ bnb_4bit_use_double_quant=True,
39
+ bnb_4bit_compute_dtype=torch.bfloat16,
40
+ bnb_4bit_quant_type="nf4"
41
+ )
42
+
43
+ # Load model and tokenizer
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
46
+ tokenizer.pad_token = tokenizer.eos_token
47
+ tokenizer.padding_side = "right"
48
+
49
+ base_model = AutoModelForCausalLM.from_pretrained(
50
+ BASE_MODEL,
51
+ quantization_config=quant_config,
52
+ device_map="auto"
53
+ )
54
+
55
+ fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)
56
+
57
+ set_seed(42)
58
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
59
+ attention_mask = torch.ones(inputs.shape, device="cuda")
60
+ outputs = fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
61
+ result = tokenizer.decode(outputs[0])
62
+
63
+ contents = result.split("Price is $")[1]
64
+ contents = contents.replace(',','')
65
+ match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
66
+ return float(match.group()) if match else 0
pricer_service.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from modal import App, Image
3
+
4
+ # Setup - define our infrastructure with code!
5
+
6
+ app = modal.App("pricer-service")
7
+ image = Image.debian_slim().pip_install("torch", "transformers", "bitsandbytes", "accelerate", "peft")
8
+ secrets = [modal.Secret.from_name("hf-secret")]
9
+
10
+ # Constants
11
+
12
+ GPU = "T4"
13
+ BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
14
+ PROJECT_NAME = "pricer"
15
+ HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results.
16
+ RUN_NAME = "2024-09-13_13.04.39"
17
+ PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}"
18
+ REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36"
19
+ FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}"
20
+
21
+
22
+ @app.function(image=image, secrets=secrets, gpu=GPU, timeout=1800)
23
+ def price(description: str) -> float:
24
+ import os
25
+ import re
26
+ import torch
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
28
+ from peft import PeftModel
29
+
30
+ QUESTION = "How much does this cost to the nearest dollar?"
31
+ PREFIX = "Price is $"
32
+
33
+ prompt = f"{QUESTION}\n{description}\n{PREFIX}"
34
+
35
+ # Quant Config
36
+ quant_config = BitsAndBytesConfig(
37
+ load_in_4bit=True,
38
+ bnb_4bit_use_double_quant=True,
39
+ bnb_4bit_compute_dtype=torch.bfloat16,
40
+ bnb_4bit_quant_type="nf4"
41
+ )
42
+
43
+ # Load model and tokenizer
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
46
+ tokenizer.pad_token = tokenizer.eos_token
47
+ tokenizer.padding_side = "right"
48
+
49
+ base_model = AutoModelForCausalLM.from_pretrained(
50
+ BASE_MODEL,
51
+ quantization_config=quant_config,
52
+ device_map="auto"
53
+ )
54
+
55
+ fine_tuned_model = PeftModel.from_pretrained(base_model, FINETUNED_MODEL, revision=REVISION)
56
+
57
+ set_seed(42)
58
+ inputs = tokenizer.encode(prompt, return_tensors="pt").to("cuda")
59
+ attention_mask = torch.ones(inputs.shape, device="cuda")
60
+ outputs = fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
61
+ result = tokenizer.decode(outputs[0])
62
+
63
+ contents = result.split("Price is $")[1]
64
+ contents = contents.replace(',','')
65
+ match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
66
+ return float(match.group()) if match else 0
pricer_service2.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import modal
2
+ from modal import App, Volume, Image
3
+
4
+ # Setup - define our infrastructure with code!
5
+
6
+ app = modal.App("pricer-service")
7
+ image = Image.debian_slim().pip_install("huggingface", "torch", "transformers", "bitsandbytes", "accelerate", "peft")
8
+ secrets = [modal.Secret.from_name("hf-secret")]
9
+
10
+ # Constants
11
+
12
+ GPU = "T4"
13
+ BASE_MODEL = "meta-llama/Meta-Llama-3.1-8B"
14
+ PROJECT_NAME = "pricer"
15
+ HF_USER = "ed-donner" # your HF name here! Or use mine if you just want to reproduce my results.
16
+ RUN_NAME = "2024-09-13_13.04.39"
17
+ PROJECT_RUN_NAME = f"{PROJECT_NAME}-{RUN_NAME}"
18
+ REVISION = "e8d637df551603dc86cd7a1598a8f44af4d7ae36"
19
+ FINETUNED_MODEL = f"{HF_USER}/{PROJECT_RUN_NAME}"
20
+ MODEL_DIR = "hf-cache/"
21
+ BASE_DIR = MODEL_DIR + BASE_MODEL
22
+ FINETUNED_DIR = MODEL_DIR + FINETUNED_MODEL
23
+
24
+ QUESTION = "How much does this cost to the nearest dollar?"
25
+ PREFIX = "Price is $"
26
+
27
+
28
+ @app.cls(image=image, secrets=secrets, gpu=GPU, timeout=1800)
29
+ class Pricer:
30
+ @modal.build()
31
+ def download_model_to_folder(self):
32
+ from huggingface_hub import snapshot_download
33
+ import os
34
+ os.makedirs(MODEL_DIR, exist_ok=True)
35
+ snapshot_download(BASE_MODEL, local_dir=BASE_DIR)
36
+ snapshot_download(FINETUNED_MODEL, revision=REVISION, local_dir=FINETUNED_DIR)
37
+
38
+ @modal.enter()
39
+ def setup(self):
40
+ import os
41
+ import torch
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
43
+ from peft import PeftModel
44
+
45
+ # Quant Config
46
+ quant_config = BitsAndBytesConfig(
47
+ load_in_4bit=True,
48
+ bnb_4bit_use_double_quant=True,
49
+ bnb_4bit_compute_dtype=torch.bfloat16,
50
+ bnb_4bit_quant_type="nf4"
51
+ )
52
+
53
+ # Load model and tokenizer
54
+
55
+ self.tokenizer = AutoTokenizer.from_pretrained(BASE_DIR)
56
+ self.tokenizer.pad_token = self.tokenizer.eos_token
57
+ self.tokenizer.padding_side = "right"
58
+
59
+ self.base_model = AutoModelForCausalLM.from_pretrained(
60
+ BASE_DIR,
61
+ quantization_config=quant_config,
62
+ device_map="auto"
63
+ )
64
+
65
+ self.fine_tuned_model = PeftModel.from_pretrained(self.base_model, FINETUNED_DIR, revision=REVISION)
66
+
67
+ @modal.method()
68
+ def price(self, description: str) -> float:
69
+ import os
70
+ import re
71
+ import torch
72
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, set_seed
73
+ from peft import PeftModel
74
+
75
+ set_seed(42)
76
+ prompt = f"{QUESTION}\n\n{description}\n\n{PREFIX}"
77
+ inputs = self.tokenizer.encode(prompt, return_tensors="pt").to("cuda")
78
+ attention_mask = torch.ones(inputs.shape, device="cuda")
79
+ outputs = self.fine_tuned_model.generate(inputs, attention_mask=attention_mask, max_new_tokens=5, num_return_sequences=1)
80
+ result = self.tokenizer.decode(outputs[0])
81
+
82
+ contents = result.split("Price is $")[1]
83
+ contents = contents.replace(',','')
84
+ match = re.search(r"[-+]?\d*\.\d+|\d+", contents)
85
+ return float(match.group()) if match else 0
86
+
87
+ @modal.method()
88
+ def wake_up(self) -> str:
89
+ return "ok"
90
+
products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/data_level0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:738e91710f5850eaeb33f48b0e38ba324ef7318e0bd642fe7010ebfaeb1b03b1
3
+ size 33520000
products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/header.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d68f3ac77e630ef88ffe98166d95cb4cec2d95ca2eaef84862265ce764550b3
3
+ size 100
products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/index_metadata.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0b66426908857b8eecd6add2e313137799630458b2ae5f8b764d52a37848ec8
3
+ size 607037
products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/length.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:206e5f58a9c2bbb44d5b7e6749a7df3f212f8e2ad2efc18744a2ef8cdd940040
3
+ size 80000
products_vectorstore/bc7562b6-30b1-424d-88bb-155673482d56/link_lists.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85fa996a0f5e5fa8b732ba9462410f4329590927e4070b823aaa5e2511fcede6
3
+ size 172072
products_vectorstore/chroma.sqlite3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3b87458085f483aa4d71440456c03ad4f31df45b1c33e05fe5435ab243a8130
3
+ size 104968192
random_forest_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46dac3dd274d8d7960e4dbb2657d8eeb33675de7356a432c041a41ff067ab360
3
+ size 652222049
requirements.txt ADDED
Binary file (14.2 kB). View file
 
test.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7262b5e575ae404f239cd46db6238e33114ecde79bbed68c44ab32bbfa16e13
3
+ size 3073425
testing.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import matplotlib.pyplot as plt
3
+
4
+ GREEN = "\033[92m"
5
+ YELLOW = "\033[93m"
6
+ RED = "\033[91m"
7
+ RESET = "\033[0m"
8
+ COLOR_MAP = {"red":RED, "orange": YELLOW, "green": GREEN}
9
+
10
+ class Tester:
11
+
12
+ def __init__(self, predictor, data, title=None, size=250):
13
+ self.predictor = predictor
14
+ self.data = data
15
+ self.title = title or predictor.__name__.replace("_", " ").title()
16
+ self.size = size
17
+ self.guesses = []
18
+ self.truths = []
19
+ self.errors = []
20
+ self.sles = []
21
+ self.colors = []
22
+
23
+ def color_for(self, error, truth):
24
+ if error<40 or error/truth < 0.2:
25
+ return "green"
26
+ elif error<80 or error/truth < 0.4:
27
+ return "orange"
28
+ else:
29
+ return "red"
30
+
31
+ def run_datapoint(self, i):
32
+ datapoint = self.data[i]
33
+ guess = self.predictor(datapoint)
34
+ truth = datapoint.price
35
+ error = abs(guess - truth)
36
+ log_error = math.log(truth+1) - math.log(guess+1)
37
+ sle = log_error ** 2
38
+ color = self.color_for(error, truth)
39
+ title = datapoint.title if len(datapoint.title) <= 40 else datapoint.title[:40]+"..."
40
+ self.guesses.append(guess)
41
+ self.truths.append(truth)
42
+ self.errors.append(error)
43
+ self.sles.append(sle)
44
+ self.colors.append(color)
45
+ print(f"{COLOR_MAP[color]}{i+1}: Guess: ${guess:,.2f} Truth: ${truth:,.2f} Error: ${error:,.2f} SLE: {sle:,.2f} Item: {title}{RESET}")
46
+
47
+ def chart(self, title):
48
+ max_error = max(self.errors)
49
+ plt.figure(figsize=(12, 8))
50
+ max_val = max(max(self.truths), max(self.guesses))
51
+ plt.plot([0, max_val], [0, max_val], color='deepskyblue', lw=2, alpha=0.6)
52
+ plt.scatter(self.truths, self.guesses, s=3, c=self.colors)
53
+ plt.xlabel('Ground Truth')
54
+ plt.ylabel('Model Estimate')
55
+ plt.xlim(0, max_val)
56
+ plt.ylim(0, max_val)
57
+ plt.title(title)
58
+ plt.show()
59
+
60
+ def report(self):
61
+ average_error = sum(self.errors) / self.size
62
+ rmsle = math.sqrt(sum(self.sles) / self.size)
63
+ hits = sum(1 for color in self.colors if color=="green")
64
+ title = f"{self.title} Error=${average_error:,.2f} RMSLE={rmsle:,.2f} Hits={hits/self.size*100:.1f}%"
65
+ self.chart(title)
66
+
67
+ def run(self):
68
+ self.error = 0
69
+ for i in range(self.size):
70
+ self.run_datapoint(i)
71
+ self.report()
72
+
73
+ @classmethod
74
+ def test(cls, function, data):
75
+ cls(function, data).run()