get_great_deal / app.py
Pierre918's picture
Upload 43 files
540f246 verified
import logging
import queue
import threading
import time
import gradio as gr
from deal_agent_framework import DealAgentFramework
from agents.deals import Opportunity, Deal
from log_utils import reformat
import plotly.graph_objects as go
class QueueHandler(logging.Handler):
def __init__(self, log_queue):
super().__init__()
self.log_queue = log_queue
def emit(self, record):
self.log_queue.put(self.format(record))
def html_for(log_data):
output = '<br>'.join(log_data[-18:])
return f"""
<div id="scrollContent" style="height: 400px; overflow-y: auto; border: 1px solid #ccc; background-color: #222229; padding: 10px;">
{output}
</div>
"""
def setup_logging(log_queue):
handler = QueueHandler(log_queue)
formatter = logging.Formatter(
"[%(asctime)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S %z",
)
handler.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler)
logger.setLevel(logging.INFO)
class App:
def __init__(self):
self.agent_framework = None
def get_agent_framework(self):
if not self.agent_framework:
self.agent_framework = DealAgentFramework()
self.agent_framework.init_agents_as_needed()
return self.agent_framework
def run(self):
with gr.Blocks(title="The Price is Right", fill_width=True) as ui:
log_data = gr.State([])
def table_for(opps):
return [[opp.deal.product_description, f"${opp.deal.price:.2f}", f"${opp.estimate:.2f}", f"${opp.discount:.2f}", opp.deal.url] for opp in opps]
def update_output(log_data, log_queue, result_queue):
initial_result = table_for(self.get_agent_framework().memory)
final_result = None
while True:
try:
message = log_queue.get_nowait()
log_data.append(reformat(message))
yield log_data, html_for(log_data), final_result or initial_result
except queue.Empty:
try:
final_result = result_queue.get_nowait()
yield log_data, html_for(log_data), final_result or initial_result
except queue.Empty:
if final_result is not None:
break
time.sleep(0.1)
def get_initial_plot():
fig = go.Figure()
fig.update_layout(
title='Loading vector DB...',
height=400,
)
return fig
def get_plot():
documents, vectors, colors = DealAgentFramework.get_plot_data(max_datapoints=1000)
# Create the 3D scatter plot
fig = go.Figure(data=[go.Scatter3d(
x=vectors[:, 0],
y=vectors[:, 1],
z=vectors[:, 2],
mode='markers',
marker=dict(size=2, color=colors, opacity=0.7),
)])
fig.update_layout(
scene=dict(xaxis_title='x',
yaxis_title='y',
zaxis_title='z',
aspectmode='manual',
aspectratio=dict(x=2.2, y=2.2, z=1), # Make x-axis twice as long
camera=dict(
eye=dict(x=1.6, y=1.6, z=0.8) # Adjust camera position
)),
height=400,
margin=dict(r=5, b=1, l=5, t=2)
)
return fig
def do_run():
new_opportunities = self.get_agent_framework().run()
table = table_for(new_opportunities)
return table
def run_with_logging(initial_log_data):
log_queue = queue.Queue()
result_queue = queue.Queue()
setup_logging(log_queue)
def worker():
result = do_run()
result_queue.put(result)
thread = threading.Thread(target=worker)
thread.start()
for log_data, output, final_result in update_output(initial_log_data, log_queue, result_queue):
yield log_data, output, final_result
def do_select(selected_index: gr.SelectData):
opportunities = self.get_agent_framework().memory
row = selected_index.index[0]
opportunity = opportunities[row]
self.get_agent_framework().planner.messenger.alert(opportunity)
with gr.Row():
gr.Markdown('<div style="text-align: center;font-size:24px"><strong>The Price is Right</strong> - Autonomous Agent Framework that hunts for deals</div>')
with gr.Row():
gr.Markdown('<div style="text-align: center;font-size:14px">A proprietary fine-tuned LLM deployed on Modal and a RAG pipeline with a frontier model collaborate to send push notifications with great online deals.</div>')
with gr.Row():
opportunities_dataframe = gr.Dataframe(
headers=["Deals found so far", "Price", "Estimate", "Discount", "URL"],
wrap=True,
column_widths=[6, 1, 1, 1, 3],
row_count=10,
col_count=5,
max_height=400,
)
with gr.Row():
with gr.Column(scale=1):
logs = gr.HTML()
with gr.Column(scale=1):
plot = gr.Plot(value=get_plot(), show_label=False)
ui.load(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
timer = gr.Timer(value=300, active=True)
timer.tick(run_with_logging, inputs=[log_data], outputs=[log_data, logs, opportunities_dataframe])
opportunities_dataframe.select(do_select)
ui.launch(share=False, inbrowser=True)
if __name__=="__main__":
App().run()