File size: 4,832 Bytes
540f246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# imports

import os
import re
import math
import json
from typing import List, Dict
from openai import OpenAI
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import chromadb
from items import Item
from testing import Tester
from agents.agent import Agent


class FrontierAgent(Agent):

    name = "Frontier Agent"
    color = Agent.BLUE

    MODEL = "gpt-4o-mini"
    
    def __init__(self, collection):
        """

        Set up this instance by connecting to OpenAI or DeepSeek, to the Chroma Datastore,

        And setting up the vector encoding model

        """
        self.log("Initializing Frontier Agent")
        deepseek_api_key = os.getenv("DEEPSEEK_API_KEY")
        if deepseek_api_key:
            self.client = OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com")
            self.MODEL = "deepseek-chat"
            self.log("Frontier Agent is set up with DeepSeek")
        else:
            self.client = OpenAI()
            self.MODEL = "gpt-4o-mini"
            self.log("Frontier Agent is setting up with OpenAI")
        self.collection = collection
        self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
        self.log("Frontier Agent is ready")

    def make_context(self, similars: List[str], prices: List[float]) -> str:
        """

        Create context that can be inserted into the prompt

        :param similars: similar products to the one being estimated

        :param prices: prices of the similar products

        :return: text to insert in the prompt that provides context

        """
        message = "To provide some context, here are some other items that might be similar to the item you need to estimate.\n\n"
        for similar, price in zip(similars, prices):
            message += f"Potentially related product:\n{similar}\nPrice is ${price:.2f}\n\n"
        return message

    def messages_for(self, description: str, similars: List[str], prices: List[float]) -> List[Dict[str, str]]:
        """

        Create the message list to be included in a call to OpenAI

        With the system and user prompt

        :param description: a description of the product

        :param similars: similar products to this one

        :param prices: prices of similar products

        :return: the list of messages in the format expected by OpenAI

        """
        system_message = "You estimate prices of items. Reply only with the price, no explanation"
        user_prompt = self.make_context(similars, prices)
        user_prompt += "And now the question for you:\n\n"
        user_prompt += "How much does this cost?\n\n" + description
        return [
            {"role": "system", "content": system_message},
            {"role": "user", "content": user_prompt},
            {"role": "assistant", "content": "Price is $"}
        ]

    def find_similars(self, description: str):
        """

        Return a list of items similar to the given one by looking in the Chroma datastore

        """
        self.log("Frontier Agent is performing a RAG search of the Chroma datastore to find 5 similar products")
        vector = self.model.encode([description])
        results = self.collection.query(query_embeddings=vector.astype(float).tolist(), n_results=5)
        documents = results['documents'][0][:]
        prices = [m['price'] for m in results['metadatas'][0][:]]
        self.log("Frontier Agent has found similar products")
        return documents, prices

    def get_price(self, s) -> float:
        """

        A utility that plucks a floating point number out of a string

        """
        s = s.replace('$','').replace(',','')
        match = re.search(r"[-+]?\d*\.\d+|\d+", s)
        return float(match.group()) if match else 0.0

    def price(self, description: str) -> float:
        """

        Make a call to OpenAI or DeepSeek to estimate the price of the described product,

        by looking up 5 similar products and including them in the prompt to give context

        :param description: a description of the product

        :return: an estimate of the price

        """
        documents, prices = self.find_similars(description)
        self.log(f"Frontier Agent is about to call {self.MODEL} with context including 5 similar products")
        response = self.client.chat.completions.create(
            model=self.MODEL, 
            messages=self.messages_for(description, documents, prices),
            seed=42,
            max_tokens=5
        )
        reply = response.choices[0].message.content
        result = self.get_price(reply)
        self.log(f"Frontier Agent completed - predicting ${result:.2f}")
        return result