Spaces:
Sleeping
Sleeping
File size: 6,736 Bytes
58ca3ce 8dba7fb 58ca3ce 3b68f3a 58ca3ce c823318 58ca3ce d323e45 58ca3ce d323e45 58ca3ce d323e45 58ca3ce 3b68f3a 58ca3ce 3b68f3a 58ca3ce d323e45 58ca3ce 2ac0792 58ca3ce 2ac0792 58ca3ce 3b68f3a 2ac0792 58ca3ce 3b68f3a 58ca3ce 3b68f3a 58ca3ce 70ebad0 58ca3ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import os
import sys
import torch
import shutil
import librosa
import warnings
import subprocess
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from collections import Counter
from PIL import Image
from model import EvalNet
from utils import get_modelist, find_mp3_files, download
TRANSLATE = {
"Symphony": "Symphony",
"Opera": "Opera",
"Solo": "Solo",
"Chamber": "Chamber",
"Pop_vocal_ballad": "Pop vocal ballad",
"Adult_contemporary": "Adult contemporary",
"Teen_pop": "Teen pop",
"Contemporary_dance_pop": "Contemporary dance pop",
"Dance_pop": "Dance pop",
"Classic_indie_pop": "Classic indie pop",
"Chamber_cabaret_and_art_pop": "Chamber cabaret & art pop",
"Soul_or_r_and_b": "Soul / R&B",
"Adult_alternative_rock": "Adult alternative rock",
"Uplifting_anthemic_rock": "Uplifting anthemic rock",
"Soft_rock": "Soft rock",
"Acoustic_pop": "Acoustic pop",
}
CLASSES = list(TRANSLATE.keys())
CACHE_DIR = "./__pycache__/tmp"
def most_common_element(input_list):
counter = Counter(input_list)
mce, _ = counter.most_common(1)[0]
return mce
def mp3_to_mel(audio_path: str, width=11.4):
y, sr = librosa.load(audio_path)
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_mel_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_mel_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{CACHE_DIR}/mel_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def mp3_to_cqt(audio_path: str, width=11.4):
y, sr = librosa.load(audio_path)
cqt_spec = librosa.cqt(y=y, sr=sr)
log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_cqt_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_cqt_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{CACHE_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def mp3_to_chroma(audio_path: str, width=11.4):
y, sr = librosa.load(audio_path)
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
dur = librosa.get_duration(y=y, sr=sr)
total_frames = log_chroma_spec.shape[1]
step = int(width * total_frames / dur)
count = int(total_frames / step)
begin = int(0.5 * (total_frames - count * step))
end = begin + step * count
for i in range(begin, end, step):
librosa.display.specshow(log_chroma_spec[:, i : i + step])
plt.axis("off")
plt.savefig(
f"{CACHE_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
bbox_inches="tight",
pad_inches=0.0,
)
plt.close()
def embed_img(img_path, input_size=224):
transform = transforms.Compose(
[
transforms.Resize([input_size, input_size]),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
img = Image.open(img_path).convert("RGB")
return transform(img).unsqueeze(0)
def inference(mp3_path, log_name: str, folder_path=CACHE_DIR):
if os.path.exists(folder_path):
shutil.rmtree(folder_path)
if not mp3_path:
return None, "Please input an audio!"
spec = log_name.split("_")[-1]
os.makedirs(folder_path, exist_ok=True)
try:
network = EvalNet(log_name)
eval("mp3_to_%s" % spec)(mp3_path)
except Exception as e:
print(f"Error converting {mp3_path} : {e}")
outputs = []
all_files = os.listdir(folder_path)
for file_name in all_files:
if file_name.lower().endswith(".jpg"):
file_path = os.path.join(folder_path, file_name)
input = embed_img(file_path)
output: torch.Tensor = network.model(input)
pred_id = torch.max(output.data, 1)[1]
outputs.append(int(pred_id))
max_count_item = most_common_element(outputs)
shutil.rmtree(folder_path)
return os.path.basename(mp3_path), TRANSLATE[CLASSES[max_count_item]]
if __name__ == "__main__":
warnings.filterwarnings("ignore")
ffmpeg = "ffmpeg-release-amd64-static"
if sys.platform.startswith("linux"):
if not os.path.exists(f"./{ffmpeg}.tar.xz"):
download(
f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz"
)
folder_path = f"{os.getcwd()}/{ffmpeg}"
if not os.path.exists(folder_path):
subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True)
os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}"
models = get_modelist(assign_model="VGG19_BN_cqt")
examples = []
example_mp3s = find_mp3_files()
for mp3 in example_mp3s:
examples.append([mp3, models[0]])
with gr.Blocks() as demo:
gr.Interface(
fn=inference,
inputs=[
gr.Audio(label="Upload MP3", type="filepath"),
gr.Dropdown(choices=models, label="Select a model", value=models[0]),
],
outputs=[
gr.Textbox(label="Audio filename", show_copy_button=True),
gr.Textbox(label="Genre recognition", show_copy_button=True),
],
examples=examples,
cache_examples=False,
allow_flagging="never",
title="It is recommended to keep the duration of recording within 15s, too long will affect the recognition efficiency.",
)
gr.Markdown(
"""
# Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
author = {Zhaorui Liu and Zijin Li},
title = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
month = nov,
year = 2021,
publisher = {Zenodo},
version = {1.1},
doi = {10.5281/zenodo.5676893},
url = {https://doi.org/10.5281/zenodo.5676893}
}
```"""
)
demo.launch()
|