File size: 6,736 Bytes
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
8dba7fb
 
58ca3ce
 
 
3b68f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
c823318
58ca3ce
 
 
 
 
 
 
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
d323e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
3b68f3a
58ca3ce
 
 
 
3b68f3a
58ca3ce
 
d323e45
 
 
 
 
 
 
 
58ca3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ac0792
58ca3ce
 
 
2ac0792
58ca3ce
 
 
 
 
3b68f3a
2ac0792
58ca3ce
 
3b68f3a
 
58ca3ce
 
 
 
3b68f3a
58ca3ce
 
70ebad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58ca3ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
import sys
import torch
import shutil
import librosa
import warnings
import subprocess
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from collections import Counter
from PIL import Image
from model import EvalNet
from utils import get_modelist, find_mp3_files, download


TRANSLATE = {
    "Symphony": "Symphony",
    "Opera": "Opera",
    "Solo": "Solo",
    "Chamber": "Chamber",
    "Pop_vocal_ballad": "Pop vocal ballad",
    "Adult_contemporary": "Adult contemporary",
    "Teen_pop": "Teen pop",
    "Contemporary_dance_pop": "Contemporary dance pop",
    "Dance_pop": "Dance pop",
    "Classic_indie_pop": "Classic indie pop",
    "Chamber_cabaret_and_art_pop": "Chamber cabaret & art pop",
    "Soul_or_r_and_b": "Soul / R&B",
    "Adult_alternative_rock": "Adult alternative rock",
    "Uplifting_anthemic_rock": "Uplifting anthemic rock",
    "Soft_rock": "Soft rock",
    "Acoustic_pop": "Acoustic pop",
}
CLASSES = list(TRANSLATE.keys())
CACHE_DIR = "./__pycache__/tmp"


def most_common_element(input_list):
    counter = Counter(input_list)
    mce, _ = counter.most_common(1)[0]
    return mce


def mp3_to_mel(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
    log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_mel_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_mel_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/mel_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def mp3_to_cqt(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    cqt_spec = librosa.cqt(y=y, sr=sr)
    log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_cqt_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_cqt_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def mp3_to_chroma(audio_path: str, width=11.4):
    y, sr = librosa.load(audio_path)
    chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
    log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
    dur = librosa.get_duration(y=y, sr=sr)
    total_frames = log_chroma_spec.shape[1]
    step = int(width * total_frames / dur)
    count = int(total_frames / step)
    begin = int(0.5 * (total_frames - count * step))
    end = begin + step * count
    for i in range(begin, end, step):
        librosa.display.specshow(log_chroma_spec[:, i : i + step])
        plt.axis("off")
        plt.savefig(
            f"{CACHE_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()


def embed_img(img_path, input_size=224):
    transform = transforms.Compose(
        [
            transforms.Resize([input_size, input_size]),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        ]
    )
    img = Image.open(img_path).convert("RGB")
    return transform(img).unsqueeze(0)


def inference(mp3_path, log_name: str, folder_path=CACHE_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not mp3_path:
        return None, "Please input an audio!"

    spec = log_name.split("_")[-1]
    os.makedirs(folder_path, exist_ok=True)
    try:
        network = EvalNet(log_name)
        eval("mp3_to_%s" % spec)(mp3_path)

    except Exception as e:
        print(f"Error converting {mp3_path} : {e}")

    outputs = []
    all_files = os.listdir(folder_path)
    for file_name in all_files:
        if file_name.lower().endswith(".jpg"):
            file_path = os.path.join(folder_path, file_name)
            input = embed_img(file_path)
            output: torch.Tensor = network.model(input)
            pred_id = torch.max(output.data, 1)[1]
            outputs.append(int(pred_id))

    max_count_item = most_common_element(outputs)
    shutil.rmtree(folder_path)
    return os.path.basename(mp3_path), TRANSLATE[CLASSES[max_count_item]]


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    ffmpeg = "ffmpeg-release-amd64-static"
    if sys.platform.startswith("linux"):
        if not os.path.exists(f"./{ffmpeg}.tar.xz"):
            download(
                f"https://www.modelscope.cn/studio/ccmusic-database/music_genre/resolve/master/{ffmpeg}.tar.xz"
            )

        folder_path = f"{os.getcwd()}/{ffmpeg}"
        if not os.path.exists(folder_path):
            subprocess.call(f"tar -xvf {ffmpeg}.tar.xz", shell=True)

        os.environ["PATH"] = f"{folder_path}:{os.environ.get('PATH', '')}"

    models = get_modelist(assign_model="VGG19_BN_cqt")
    examples = []
    example_mp3s = find_mp3_files()
    for mp3 in example_mp3s:
        examples.append([mp3, models[0]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=inference,
            inputs=[
                gr.Audio(label="Upload MP3", type="filepath"),
                gr.Dropdown(choices=models, label="Select a model", value=models[0]),
            ],
            outputs=[
                gr.Textbox(label="Audio filename", show_copy_button=True),
                gr.Textbox(label="Genre recognition", show_copy_button=True),
            ],
            examples=examples,
            cache_examples=False,
            allow_flagging="never",
            title="It is recommended to keep the duration of recording within 15s, too long will affect the recognition efficiency.",
        )

        gr.Markdown(
            """
# Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author    = {Zhaorui Liu and Zijin Li},
  title     = {Music Data Sharing Platform for Computational Musicology Research (CCMUSIC DATASET)},
  month     = nov,
  year      = 2021,
  publisher = {Zenodo},
  version   = {1.1},
  doi       = {10.5281/zenodo.5676893},
  url       = {https://doi.org/10.5281/zenodo.5676893}
}
```"""
        )

    demo.launch()