Spaces:
Sleeping
Sleeping
admin
commited on
Commit
·
3b68f3a
1
Parent(s):
461b48a
rm cite
Browse files- app.py +30 -48
- requirements.txt +3 -3
- utils.py +4 -10
app.py
CHANGED
@@ -18,25 +18,25 @@ from PIL import Image
|
|
18 |
|
19 |
|
20 |
TRANSLATE = {
|
21 |
-
"Symphony": "
|
22 |
-
"Opera": "
|
23 |
-
"Solo": "
|
24 |
-
"Chamber": "
|
25 |
-
"Pop_vocal_ballad": "
|
26 |
-
"Adult_contemporary": "
|
27 |
-
"Teen_pop": "
|
28 |
-
"Contemporary_dance_pop": "
|
29 |
-
"Dance_pop": "
|
30 |
-
"Classic_indie_pop": "
|
31 |
-
"Chamber_cabaret_and_art_pop": "
|
32 |
-
"Soul_or_r_and_b": "
|
33 |
-
"Adult_alternative_rock": "
|
34 |
-
"Uplifting_anthemic_rock": "
|
35 |
-
"Soft_rock": "
|
36 |
-
"Acoustic_pop": "
|
37 |
}
|
38 |
-
|
39 |
CLASSES = list(TRANSLATE.keys())
|
|
|
40 |
|
41 |
|
42 |
def most_common_element(input_list):
|
@@ -46,7 +46,7 @@ def most_common_element(input_list):
|
|
46 |
|
47 |
|
48 |
def mp3_to_mel(audio_path: str, width=11.4):
|
49 |
-
os.makedirs(
|
50 |
try:
|
51 |
y, sr = librosa.load(audio_path)
|
52 |
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
@@ -61,7 +61,7 @@ def mp3_to_mel(audio_path: str, width=11.4):
|
|
61 |
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
62 |
plt.axis("off")
|
63 |
plt.savefig(
|
64 |
-
f"
|
65 |
bbox_inches="tight",
|
66 |
pad_inches=0.0,
|
67 |
)
|
@@ -72,7 +72,7 @@ def mp3_to_mel(audio_path: str, width=11.4):
|
|
72 |
|
73 |
|
74 |
def mp3_to_cqt(audio_path: str, width=11.4):
|
75 |
-
os.makedirs(
|
76 |
try:
|
77 |
y, sr = librosa.load(audio_path)
|
78 |
cqt_spec = librosa.cqt(y=y, sr=sr)
|
@@ -87,7 +87,7 @@ def mp3_to_cqt(audio_path: str, width=11.4):
|
|
87 |
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
88 |
plt.axis("off")
|
89 |
plt.savefig(
|
90 |
-
f"
|
91 |
bbox_inches="tight",
|
92 |
pad_inches=0.0,
|
93 |
)
|
@@ -98,7 +98,7 @@ def mp3_to_cqt(audio_path: str, width=11.4):
|
|
98 |
|
99 |
|
100 |
def mp3_to_chroma(audio_path: str, width=11.4):
|
101 |
-
os.makedirs(
|
102 |
try:
|
103 |
y, sr = librosa.load(audio_path)
|
104 |
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
@@ -113,7 +113,7 @@ def mp3_to_chroma(audio_path: str, width=11.4):
|
|
113 |
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
114 |
plt.axis("off")
|
115 |
plt.savefig(
|
116 |
-
f"
|
117 |
bbox_inches="tight",
|
118 |
pad_inches=0.0,
|
119 |
)
|
@@ -135,12 +135,12 @@ def embed_img(img_path, input_size=224):
|
|
135 |
return transform(img).unsqueeze(0)
|
136 |
|
137 |
|
138 |
-
def inference(mp3_path, log_name: str, folder_path=
|
139 |
if os.path.exists(folder_path):
|
140 |
shutil.rmtree(folder_path)
|
141 |
|
142 |
if not mp3_path:
|
143 |
-
return None, "
|
144 |
|
145 |
network = EvalNet(log_name)
|
146 |
spec = log_name.split("_")[-1]
|
@@ -186,35 +186,17 @@ if __name__ == "__main__":
|
|
186 |
gr.Interface(
|
187 |
fn=inference,
|
188 |
inputs=[
|
189 |
-
gr.Audio(label="
|
190 |
-
gr.Dropdown(
|
191 |
-
choices=models, label="选择模型 Select a model", value=models[6]
|
192 |
-
),
|
193 |
],
|
194 |
outputs=[
|
195 |
-
gr.Textbox(label="
|
196 |
-
gr.Textbox(label="
|
197 |
],
|
198 |
examples=examples,
|
199 |
cache_examples=False,
|
200 |
allow_flagging="never",
|
201 |
-
title="
|
202 |
-
)
|
203 |
-
|
204 |
-
gr.Markdown(
|
205 |
-
"""
|
206 |
-
# 引用 Cite
|
207 |
-
```bibtex
|
208 |
-
@dataset{zhaorui_liu_2021_5676893,
|
209 |
-
author = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
|
210 |
-
title = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
|
211 |
-
month = {mar},
|
212 |
-
year = {2024},
|
213 |
-
publisher = {HuggingFace},
|
214 |
-
version = {1.2},
|
215 |
-
url = {https://huggingface.co/ccmusic-database}
|
216 |
-
}
|
217 |
-
```"""
|
218 |
)
|
219 |
|
220 |
demo.launch()
|
|
|
18 |
|
19 |
|
20 |
TRANSLATE = {
|
21 |
+
"Symphony": "Symphony",
|
22 |
+
"Opera": "Opera",
|
23 |
+
"Solo": "Solo",
|
24 |
+
"Chamber": "Chamber",
|
25 |
+
"Pop_vocal_ballad": "Pop vocal ballad",
|
26 |
+
"Adult_contemporary": "Adult contemporary",
|
27 |
+
"Teen_pop": "Teen pop",
|
28 |
+
"Contemporary_dance_pop": "Contemporary dance pop",
|
29 |
+
"Dance_pop": "Dance pop",
|
30 |
+
"Classic_indie_pop": "Classic indie pop",
|
31 |
+
"Chamber_cabaret_and_art_pop": "Chamber cabaret & art pop",
|
32 |
+
"Soul_or_r_and_b": "Soul / R&B",
|
33 |
+
"Adult_alternative_rock": "Adult alternative rock",
|
34 |
+
"Uplifting_anthemic_rock": "Uplifting anthemic rock",
|
35 |
+
"Soft_rock": "Soft rock",
|
36 |
+
"Acoustic_pop": "Acoustic pop",
|
37 |
}
|
|
|
38 |
CLASSES = list(TRANSLATE.keys())
|
39 |
+
CACHE_DIR = "__pycache__"
|
40 |
|
41 |
|
42 |
def most_common_element(input_list):
|
|
|
46 |
|
47 |
|
48 |
def mp3_to_mel(audio_path: str, width=11.4):
|
49 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
50 |
try:
|
51 |
y, sr = librosa.load(audio_path)
|
52 |
mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
|
|
|
61 |
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
62 |
plt.axis("off")
|
63 |
plt.savefig(
|
64 |
+
f"{CACHE_DIR}/mel_{round(dur, 2)}_{i}.jpg",
|
65 |
bbox_inches="tight",
|
66 |
pad_inches=0.0,
|
67 |
)
|
|
|
72 |
|
73 |
|
74 |
def mp3_to_cqt(audio_path: str, width=11.4):
|
75 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
76 |
try:
|
77 |
y, sr = librosa.load(audio_path)
|
78 |
cqt_spec = librosa.cqt(y=y, sr=sr)
|
|
|
87 |
librosa.display.specshow(log_cqt_spec[:, i : i + step])
|
88 |
plt.axis("off")
|
89 |
plt.savefig(
|
90 |
+
f"{CACHE_DIR}/cqt_{round(dur, 2)}_{i}.jpg",
|
91 |
bbox_inches="tight",
|
92 |
pad_inches=0.0,
|
93 |
)
|
|
|
98 |
|
99 |
|
100 |
def mp3_to_chroma(audio_path: str, width=11.4):
|
101 |
+
os.makedirs(CACHE_DIR, exist_ok=True)
|
102 |
try:
|
103 |
y, sr = librosa.load(audio_path)
|
104 |
chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
|
|
|
113 |
librosa.display.specshow(log_chroma_spec[:, i : i + step])
|
114 |
plt.axis("off")
|
115 |
plt.savefig(
|
116 |
+
f"{CACHE_DIR}/chroma_{round(dur, 2)}_{i}.jpg",
|
117 |
bbox_inches="tight",
|
118 |
pad_inches=0.0,
|
119 |
)
|
|
|
135 |
return transform(img).unsqueeze(0)
|
136 |
|
137 |
|
138 |
+
def inference(mp3_path, log_name: str, folder_path=CACHE_DIR):
|
139 |
if os.path.exists(folder_path):
|
140 |
shutil.rmtree(folder_path)
|
141 |
|
142 |
if not mp3_path:
|
143 |
+
return None, "Please input an audio!"
|
144 |
|
145 |
network = EvalNet(log_name)
|
146 |
spec = log_name.split("_")[-1]
|
|
|
186 |
gr.Interface(
|
187 |
fn=inference,
|
188 |
inputs=[
|
189 |
+
gr.Audio(label="Upload MP3", type="filepath"),
|
190 |
+
gr.Dropdown(choices=models, label="Select a model", value=models[6]),
|
|
|
|
|
191 |
],
|
192 |
outputs=[
|
193 |
+
gr.Textbox(label="Audio filename", show_copy_button=True),
|
194 |
+
gr.Textbox(label="Genre recognition", show_copy_button=True),
|
195 |
],
|
196 |
examples=examples,
|
197 |
cache_examples=False,
|
198 |
allow_flagging="never",
|
199 |
+
title="It is recommended to keep the duration of recording within 15s, too long will affect the recognition efficiency.",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
)
|
201 |
|
202 |
demo.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
-
librosa
|
2 |
torch
|
|
|
|
|
3 |
matplotlib
|
4 |
torchvision
|
5 |
-
|
6 |
-
modelscope==1.15
|
|
|
|
|
1 |
torch
|
2 |
+
pillow
|
3 |
+
librosa
|
4 |
matplotlib
|
5 |
torchvision
|
6 |
+
modelscope[framework]==1.18
|
|
utils.py
CHANGED
@@ -32,23 +32,17 @@ def get_modelist(model_dir=MODEL_DIR):
|
|
32 |
try:
|
33 |
entries = os.listdir(model_dir)
|
34 |
except OSError as e:
|
35 |
-
print(f"
|
36 |
return
|
37 |
|
38 |
-
# 遍历所有条目
|
39 |
output = []
|
40 |
for entry in entries:
|
41 |
-
# 获取完整路径
|
42 |
full_path = os.path.join(model_dir, entry)
|
43 |
-
|
44 |
-
# 跳过'.git'文件夹
|
45 |
if entry == ".git" or entry == "examples":
|
46 |
-
print(f"
|
47 |
continue
|
48 |
|
49 |
-
# 检查条目是文件还是目录
|
50 |
if os.path.isdir(full_path):
|
51 |
-
# 打印目录路径
|
52 |
output.append(os.path.basename(full_path))
|
53 |
|
54 |
return output
|
@@ -62,6 +56,6 @@ def download(url: str):
|
|
62 |
for chunk in response.iter_content(chunk_size=8192):
|
63 |
f.write(chunk)
|
64 |
|
65 |
-
print(f"
|
66 |
else:
|
67 |
-
print(f"
|
|
|
32 |
try:
|
33 |
entries = os.listdir(model_dir)
|
34 |
except OSError as e:
|
35 |
+
print(f"Cannot access {model_dir}: {e}")
|
36 |
return
|
37 |
|
|
|
38 |
output = []
|
39 |
for entry in entries:
|
|
|
40 |
full_path = os.path.join(model_dir, entry)
|
|
|
|
|
41 |
if entry == ".git" or entry == "examples":
|
42 |
+
print(f"Skip .git / examples dir: {full_path}")
|
43 |
continue
|
44 |
|
|
|
45 |
if os.path.isdir(full_path):
|
|
|
46 |
output.append(os.path.basename(full_path))
|
47 |
|
48 |
return output
|
|
|
56 |
for chunk in response.iter_content(chunk_size=8192):
|
57 |
f.write(chunk)
|
58 |
|
59 |
+
print(f"The file has been downloaded to {os.getcwd()}/{filename}")
|
60 |
else:
|
61 |
+
print(f"Failed to download, status code: {response.status_code}")
|