File size: 1,296 Bytes
fac987d dc1a056 6ccb460 8a681fd f264eed 4c39ff2 638c781 fac987d 21c18e3 fac987d 6ccb460 21c18e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
from langchain_community.llms.ctransformers import CTransformers
import os
import gradio as gr
hf_token = os.environ.get('HF_TOKEN')
from huggingface_hub import login
login(token=hf_token)
# config = AutoConfig.from_pretrained("Mistral-7B-v0.1-GGUF")
# config.config.max_new_tokens = 2000
# config.config.context_length = 6000
# llm = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-v0.1-GGUF", model_file="mistral-7b-v0.1.Q5_K_M.gguf", model_type="mistral",gpu_layers=0, config=config)
MODEL_TYPE = 'mistral'
MODEL_BIN_PATH = "mistral-7b-instruct-v0.1.Q3_K_S.gguf"
MAX_NEW_TOKEN = 600
TEMPRATURE = 0.01
CONTEXT_LENGTH = 6000
llm = CTransformers(
model=MODEL_BIN_PATH,
config={
'max_new_tokens': MAX_NEW_TOKEN,
'temperature': TEMPRATURE,
'context_length': CONTEXT_LENGTH
},
model_type=MODEL_TYPE
)
def generate_text(input_text):
output = llm(input_text)
print(output)
cleaned_output_text = output_text.replace(input_text, "")
return cleaned_output_text
text_generation_interface = gr.Interface(
fn=generate_text,
inputs=[
gr.inputs.Textbox(label="Input Text"),
],
outputs=gr.inputs.Textbox(label="Generated Text")).launch() |