Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 6 |
+
"mistralai/Mistral-7B-Instruct-v0.1",
|
| 7 |
+
torch_dtype=torch.bfloat16,
|
| 8 |
+
trust_remote_code=True,
|
| 9 |
+
device_map="auto",
|
| 10 |
+
context_length = 6000)
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
| 12 |
+
|
| 13 |
+
def generate_text(input_text):
|
| 14 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 15 |
+
attention_mask = torch.ones(input_ids.shape)
|
| 16 |
+
|
| 17 |
+
output = model.generate(
|
| 18 |
+
input_ids,
|
| 19 |
+
attention_mask=attention_mask,
|
| 20 |
+
max_length=200,
|
| 21 |
+
do_sample=True,
|
| 22 |
+
top_k=10,
|
| 23 |
+
num_return_sequences=1,
|
| 24 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 25 |
+
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 29 |
+
print(output_text)
|
| 30 |
+
|
| 31 |
+
# Remove Prompt Echo from Generated Text
|
| 32 |
+
cleaned_output_text = output_text.replace(input_text, "")
|
| 33 |
+
return cleaned_output_text
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
text_generation_interface = gr.Interface(
|
| 37 |
+
fn=generate_text,
|
| 38 |
+
inputs=[
|
| 39 |
+
gr.inputs.Textbox(label="Input Text"),
|
| 40 |
+
],
|
| 41 |
+
outputs=gr.inputs.Textbox(label="Generated Text")).launch()
|