File size: 31,312 Bytes
ffcb052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
"""
Scanpy tutorial for single-cell RNA sequencing preprocessing and clustering analysis.

This MCP Server provides 7 tools:
1. quality_control: Calculate and visualize QC metrics, filter cells and genes, detect doublets
2. normalize_data: Normalize count data with median total counts and log transformation
3. select_features: Identify highly variable genes for feature selection
4. reduce_dimensionality: Perform PCA analysis and variance visualization
5. build_neighborhood_graph: Construct nearest neighbor graph and UMAP embedding
6. cluster_cells: Perform Leiden clustering with visualization
7. annotate_cell_types: Multi-resolution clustering, marker gene analysis, and differential expression

All tools extracted from `https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb`.
"""

# Standard imports
from typing import Annotated, Literal, Any
import pandas as pd
import numpy as np
from pathlib import Path
import os
from fastmcp import FastMCP
from datetime import datetime
import matplotlib.pyplot as plt

# Scanpy and related imports
import scanpy as sc
import anndata as ad

# Base persistent directory (HF Spaces guarantees /data is writable & persistent)
BASE_DIR = Path("/data")

DEFAULT_INPUT_DIR = BASE_DIR / "tmp_inputs"
DEFAULT_OUTPUT_DIR = BASE_DIR / "tmp_outputs"

INPUT_DIR = Path(os.environ.get("CLUSTERING_INPUT_DIR", DEFAULT_INPUT_DIR))
OUTPUT_DIR = Path(os.environ.get("CLUSTERING_OUTPUT_DIR", DEFAULT_OUTPUT_DIR))

# Ensure directories exist
INPUT_DIR.mkdir(parents=True, exist_ok=True)
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)

# Timestamp for unique outputs
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

# MCP server instance
clustering_mcp = FastMCP(name="clustering")

# Set scanpy figure parameters
sc.settings.set_figure_params(dpi=300, facecolor="white")

@clustering_mcp.tool
def quality_control(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file or directory with 10X data. The h5ad file should contain raw count data in AnnData format."] = None,
    # Analysis parameters with tutorial defaults
    mt_prefix: Annotated[str, "Prefix for mitochondrial genes"] = "MT-",
    ribo_prefixes: Annotated[list, "Prefixes for ribosomal genes"] = ["RPS", "RPL"],
    hb_pattern: Annotated[str, "Pattern for hemoglobin genes"] = "^HB[^(P)]",
    min_genes: Annotated[int, "Minimum number of genes expressed per cell"] = 100,
    min_cells: Annotated[int, "Minimum number of cells expressing a gene"] = 3,
    batch_key: Annotated[str | None, "Column name in adata.obs for batch information"] = None,
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Calculate quality control metrics, visualize QC distributions, and filter low-quality cells and genes.
    Input is single-cell count data in AnnData format and output is QC plots, filtered data, and doublet scores.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file or 10X data directory must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"qc_{timestamp}"
    
    # Load data
    data_path = Path(data_path)
    if data_path.is_dir():
        # Assume 10X directory format
        adata = sc.read_10x_mtx(data_path)
        adata.var_names_make_unique()
    elif data_path.suffix in ['.h5', '.h5ad']:
        if data_path.suffix == '.h5':
            adata = sc.read_10x_h5(data_path)
            adata.var_names_make_unique()
        else:
            adata = ad.read_h5ad(data_path)
    else:
        raise ValueError("data_path must be a directory with 10X data or h5/h5ad file")
    
    # Define gene categories
    adata.var["mt"] = adata.var_names.str.startswith(mt_prefix)
    adata.var["ribo"] = adata.var_names.str.startswith(tuple(ribo_prefixes))
    adata.var["hb"] = adata.var_names.str.contains(hb_pattern)
    
    # Calculate QC metrics
    sc.pp.calculate_qc_metrics(
        adata, qc_vars=["mt", "ribo", "hb"], inplace=True, log1p=True
    )
    
    # Create QC violin plots
    plt.figure(figsize=(12, 4))
    sc.pl.violin(
        adata,
        ["n_genes_by_counts", "total_counts", "pct_counts_mt"],
        jitter=0.4,
        multi_panel=True,
    )
    violin_path = OUTPUT_DIR / f"{out_prefix}_qc_violin.png"
    plt.savefig(violin_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Create QC scatter plot
    plt.figure(figsize=(8, 6))
    sc.pl.scatter(adata, "total_counts", "n_genes_by_counts", color="pct_counts_mt")
    scatter_path = OUTPUT_DIR / f"{out_prefix}_qc_scatter.png"
    plt.savefig(scatter_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Filter cells and genes
    print(f"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes")
    sc.pp.filter_cells(adata, min_genes=min_genes)
    sc.pp.filter_genes(adata, min_cells=min_cells)
    print(f"After filtering: {adata.n_obs} cells, {adata.n_vars} genes")
    
    # Doublet detection
    if batch_key and batch_key in adata.obs.columns:
        sc.pp.scrublet(adata, batch_key=batch_key)
    else:
        sc.pp.scrublet(adata)
    
    # Save processed data
    output_file = OUTPUT_DIR / f"{out_prefix}_qc_processed.h5ad"
    adata.write_h5ad(output_file)
    
    # Save QC metrics summary
    qc_summary = pd.DataFrame({
        'metric': ['n_obs', 'n_vars', 'mean_n_genes_by_counts', 'mean_total_counts', 'mean_pct_counts_mt', 'doublet_rate'],
        'value': [
            adata.n_obs,
            adata.n_vars,
            adata.obs['n_genes_by_counts'].mean(),
            adata.obs['total_counts'].mean(),
            adata.obs['pct_counts_mt'].mean(),
            adata.obs['predicted_doublet'].sum() / adata.n_obs
        ]
    })
    qc_summary_path = OUTPUT_DIR / f"{out_prefix}_qc_summary.csv"
    qc_summary.to_csv(qc_summary_path, index=False)
    
    return {
        "message": f"Quality control completed for {adata.n_obs} cells and {adata.n_vars} genes",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": [
            {
                "description": "QC violin plots",
                "path": str(violin_path.resolve())
            },
            {
                "description": "QC scatter plot",
                "path": str(scatter_path.resolve())
            },
            {
                "description": "QC processed data",
                "path": str(output_file.resolve())
            },
            {
                "description": "QC metrics summary",
                "path": str(qc_summary_path.resolve())
            }
        ]
    }

@clustering_mcp.tool
def normalize_data(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file with QC-processed single-cell data. Should be output from quality_control tool."],
    # Analysis parameters with tutorial defaults
    target_sum: Annotated[float | None, "Target sum for normalization. None uses median total counts"] = None,
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Normalize count data using median total counts scaling followed by log1p transformation.
    Input is quality-controlled AnnData object and output is normalized expression data.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"normalized_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Saving count data
    adata.layers["counts"] = adata.X.copy()
    
    # Normalizing to median total counts (or target_sum if specified)
    sc.pp.normalize_total(adata, target_sum=target_sum)
    # Logarithmize the data
    sc.pp.log1p(adata)
    
    # Save normalized data
    output_file = OUTPUT_DIR / f"{out_prefix}_normalized.h5ad"
    adata.write_h5ad(output_file)
    
    # Create normalization summary
    import numpy as np
    from scipy import sparse
    
    # Handle sparse matrices properly
    if sparse.issparse(adata.layers["counts"]):
        counts_mean = adata.layers["counts"].mean()
        counts_std = np.sqrt(adata.layers["counts"].multiply(adata.layers["counts"]).mean() - counts_mean**2)
    else:
        counts_mean = np.mean(adata.layers["counts"])
        counts_std = np.std(adata.layers["counts"])
        
    if sparse.issparse(adata.X):
        x_mean = adata.X.mean()
        x_std = np.sqrt(adata.X.multiply(adata.X).mean() - x_mean**2)
    else:
        x_mean = np.mean(adata.X)
        x_std = np.std(adata.X)
    
    norm_summary = pd.DataFrame({
        'layer': ['raw_counts', 'normalized_log1p'],
        'mean_expression': [float(counts_mean), float(x_mean)],
        'std_expression': [float(counts_std), float(x_std)]
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_normalization_summary.csv"
    norm_summary.to_csv(summary_path, index=False)
    
    return {
        "message": f"Data normalized with log1p transformation for {adata.n_obs} cells",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": [
            {
                "description": "Normalized data",
                "path": str(output_file.resolve())
            },
            {
                "description": "Normalization summary",
                "path": str(summary_path.resolve())
            }
        ]
    }

@clustering_mcp.tool
def select_features(
    # Primary data inputs  
    data_path: Annotated[str, "Path to h5ad file with normalized single-cell data. Should be output from normalize_data tool."],
    # Analysis parameters with tutorial defaults
    n_top_genes: Annotated[int, "Number of highly variable genes to select"] = 2000,
    batch_key: Annotated[str | None, "Column name in adata.obs for batch correction"] = None,
    flavor: Annotated[Literal["seurat", "cell_ranger", "seurat_v3"], "Method for highly variable gene selection"] = "seurat",
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Identify highly variable genes for feature selection using specified method.
    Input is normalized AnnData object and output is feature selection plot and filtered data.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"features_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Find highly variable genes
    if batch_key and batch_key in adata.obs.columns:
        sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, batch_key=batch_key, flavor=flavor)
    else:
        sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, flavor=flavor)
    
    # Plot highly variable genes
    plt.figure(figsize=(10, 6))
    sc.pl.highly_variable_genes(adata)
    plot_path = OUTPUT_DIR / f"{out_prefix}_highly_variable_genes.png"
    plt.savefig(plot_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Save data with feature selection
    output_file = OUTPUT_DIR / f"{out_prefix}_feature_selected.h5ad"
    adata.write_h5ad(output_file)
    
    # Create feature selection summary
    n_highly_var = adata.var['highly_variable'].sum()
    feature_summary = pd.DataFrame({
        'metric': ['total_genes', 'highly_variable_genes', 'selection_fraction'],
        'value': [
            adata.n_vars,
            n_highly_var,
            n_highly_var / adata.n_vars
        ]
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_feature_summary.csv"
    feature_summary.to_csv(summary_path, index=False)
    
    return {
        "message": f"Selected {n_highly_var} highly variable genes from {adata.n_vars} total genes",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": [
            {
                "description": "Highly variable genes plot",
                "path": str(plot_path.resolve())
            },
            {
                "description": "Feature selected data",
                "path": str(output_file.resolve())
            },
            {
                "description": "Feature selection summary",
                "path": str(summary_path.resolve())
            }
        ]
    }

@clustering_mcp.tool
def reduce_dimensionality(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file with feature-selected data. Should be output from select_features tool."],
    # Analysis parameters with tutorial defaults
    n_comps: Annotated[int, "Number of principal components to compute"] = 50,
    use_highly_variable: Annotated[bool, "Whether to use only highly variable genes"] = True,
    n_pcs_plot: Annotated[int, "Number of PCs to show in variance plot"] = 50,
    color_vars: Annotated[list, "Variables to color PCA plot by"] = ["sample", "pct_counts_mt"],
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Perform principal component analysis for dimensionality reduction and visualization.
    Input is feature-selected AnnData object and output is PCA embeddings and variance plots.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix  
    if out_prefix is None:
        out_prefix = f"pca_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Perform PCA
    sc.tl.pca(adata, n_comps=n_comps, use_highly_variable=use_highly_variable)
    
    # Plot PCA variance ratio
    plt.figure(figsize=(10, 6))
    sc.pl.pca_variance_ratio(adata, n_pcs=n_pcs_plot, log=True)
    variance_path = OUTPUT_DIR / f"{out_prefix}_pca_variance.png"
    plt.savefig(variance_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Plot PCA colored by specified variables
    available_vars = [var for var in color_vars if var in adata.obs.columns]
    if available_vars:
        # Create combinations for plotting
        plot_colors = []
        plot_dims = []
        for var in available_vars[:2]:  # Limit to 2 variables to match tutorial
            plot_colors.extend([var, var])
            plot_dims.extend([(0, 1), (2, 3)])
        
        plt.figure(figsize=(12, 8))
        sc.pl.pca(
            adata,
            color=plot_colors,
            dimensions=plot_dims,
            ncols=2,
            size=2,
        )
        pca_path = OUTPUT_DIR / f"{out_prefix}_pca_colored.png"
        plt.savefig(pca_path, dpi=300, bbox_inches='tight')
        plt.close()
        pca_artifacts = [{"description": "PCA colored by variables", "path": str(pca_path.resolve())}]
    else:
        pca_artifacts = []
    
    # Save data with PCA
    output_file = OUTPUT_DIR / f"{out_prefix}_pca.h5ad"
    adata.write_h5ad(output_file)
    
    # Create PCA summary
    pca_summary = pd.DataFrame({
        'PC': [f'PC{i+1}' for i in range(min(10, n_comps))],
        'variance_ratio': adata.uns['pca']['variance_ratio'][:min(10, n_comps)]
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_pca_summary.csv"
    pca_summary.to_csv(summary_path, index=False)
    
    artifacts = [
        {
            "description": "PCA variance plot",
            "path": str(variance_path.resolve())
        },
        {
            "description": "PCA processed data",
            "path": str(output_file.resolve())
        },
        {
            "description": "PCA summary",
            "path": str(summary_path.resolve())
        }
    ] + pca_artifacts
    
    return {
        "message": f"PCA completed with {n_comps} components explaining {adata.uns['pca']['variance_ratio'].sum():.2%} variance",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": artifacts
    }

@clustering_mcp.tool
def build_neighborhood_graph(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file with PCA data. Should be output from reduce_dimensionality tool."],
    # Analysis parameters with tutorial defaults
    n_neighbors: Annotated[int, "Number of neighbors for graph construction"] = 15,
    n_pcs: Annotated[int, "Number of principal components to use"] = None,
    color_by: Annotated[str, "Variable to color UMAP by"] = "sample",
    point_size: Annotated[float, "Point size for UMAP plot"] = 2,
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Build nearest neighbor graph from PCA space and compute UMAP embedding for visualization.
    Input is PCA-processed AnnData object and output is neighbor graph, UMAP embedding, and visualization.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"neighbors_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Compute the neighborhood graph
    sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=n_pcs)
    
    # Compute UMAP
    sc.tl.umap(adata)
    
    # Plot UMAP
    if color_by in adata.obs.columns:
        plt.figure(figsize=(8, 6))
        sc.pl.umap(adata, color=color_by, size=point_size)
        umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
        plt.savefig(umap_path, dpi=300, bbox_inches='tight')
        plt.close()
    else:
        # Plot without coloring if variable doesn't exist
        plt.figure(figsize=(8, 6))
        sc.pl.umap(adata, size=point_size)
        umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
        plt.savefig(umap_path, dpi=300, bbox_inches='tight')
        plt.close()
    
    # Save data with neighborhood graph and UMAP
    output_file = OUTPUT_DIR / f"{out_prefix}_neighbors.h5ad"
    adata.write_h5ad(output_file)
    
    # Create neighborhood summary
    neighbor_summary = pd.DataFrame({
        'metric': ['n_neighbors', 'n_pcs_used', 'umap_dimensions'],
        'value': [n_neighbors, n_pcs, adata.obsm['X_umap'].shape[1]]
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_neighbor_summary.csv"
    neighbor_summary.to_csv(summary_path, index=False)
    
    return {
        "message": f"Neighborhood graph and UMAP completed for {adata.n_obs} cells",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb", 
        "artifacts": [
            {
                "description": "UMAP visualization",
                "path": str(umap_path.resolve())
            },
            {
                "description": "Neighborhood graph data",
                "path": str(output_file.resolve())
            },
            {
                "description": "Neighborhood summary",
                "path": str(summary_path.resolve())
            }
        ]
    }

@clustering_mcp.tool
def cluster_cells(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file with neighborhood graph. Should be output from build_neighborhood_graph tool."],
    # Analysis parameters with tutorial defaults
    resolution: Annotated[float, "Resolution parameter for Leiden clustering"] = 0.5,
    flavor: Annotated[Literal["igraph", "leidenalg"], "Leiden algorithm implementation"] = "igraph",
    n_iterations: Annotated[int, "Number of iterations for clustering"] = 2,
    cluster_key: Annotated[str, "Key name for storing clusters in adata.obs"] = "leiden",
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Perform Leiden clustering on the neighborhood graph and visualize results.
    Input is AnnData with neighborhood graph and output is clustered data with UMAP visualization.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"clusters_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Perform Leiden clustering
    sc.tl.leiden(
        adata, 
        resolution=resolution, 
        flavor=flavor, 
        n_iterations=n_iterations,
        key_added=cluster_key
    )
    
    # Plot UMAP colored by clusters
    plt.figure(figsize=(8, 6))
    sc.pl.umap(adata, color=[cluster_key])
    cluster_path = OUTPUT_DIR / f"{out_prefix}_clusters_umap.png"
    plt.savefig(cluster_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Save clustered data
    output_file = OUTPUT_DIR / f"{out_prefix}_clustered.h5ad"
    adata.write_h5ad(output_file)
    
    # Create clustering summary
    n_clusters = len(adata.obs[cluster_key].unique())
    cluster_counts = adata.obs[cluster_key].value_counts().sort_index()
    
    cluster_summary = pd.DataFrame({
        'cluster': cluster_counts.index,
        'n_cells': cluster_counts.values,
        'fraction': cluster_counts.values / adata.n_obs
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_cluster_summary.csv"
    cluster_summary.to_csv(summary_path, index=False)
    
    return {
        "message": f"Leiden clustering identified {n_clusters} clusters at resolution {resolution}",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": [
            {
                "description": "Clusters UMAP plot",
                "path": str(cluster_path.resolve())
            },
            {
                "description": "Clustered data",
                "path": str(output_file.resolve())
            },
            {
                "description": "Cluster summary",
                "path": str(summary_path.resolve())
            }
        ]
    }

@clustering_mcp.tool
def annotate_cell_types(
    # Primary data inputs
    data_path: Annotated[str, "Path to h5ad file with clustered data. Should be output from cluster_cells tool."],
    # Analysis parameters with tutorial defaults
    resolutions: Annotated[list, "List of resolutions for multi-resolution clustering"] = [0.02, 0.5, 2.0],
    groupby_key: Annotated[str, "Clustering key to use for marker analysis"] = "leiden_res_0.50",
    method: Annotated[Literal["wilcoxon", "t-test", "logreg"], "Method for differential expression"] = "wilcoxon",
    n_genes: Annotated[int, "Number of top genes to show in plots"] = 5,
    marker_genes: Annotated[dict | None, "Dictionary of cell type marker genes"] = None,
    out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
    """
    Perform multi-resolution clustering, marker gene analysis, and differential expression for cell type annotation.
    Input is clustered AnnData object and output is multi-resolution plots, marker analysis, and differential expression results.
    """
    # Validate exactly one input
    if data_path is None:
        raise ValueError("Path to h5ad file must be provided")
    
    # Set output prefix
    if out_prefix is None:
        out_prefix = f"annotation_{timestamp}"
    
    # Load data
    adata = ad.read_h5ad(data_path)
    
    # Define default marker genes if not provided
    if marker_genes is None:
        marker_genes = {
            "CD14+ Mono": ["FCN1", "CD14"],
            "CD16+ Mono": ["TCF7L2", "FCGR3A", "LYN"],
            "cDC2": ["CST3", "COTL1", "LYZ", "DMXL2", "CLEC10A", "FCER1A"],
            "Erythroblast": ["MKI67", "HBA1", "HBB"],
            "Proerythroblast": ["CDK6", "SYNGR1", "HBM", "GYPA"],
            "NK": ["GNLY", "NKG7", "CD247", "FCER1G", "TYROBP", "KLRG1", "FCGR3A"],
            "ILC": ["ID2", "PLCG2", "GNLY", "SYNE1"],
            "Naive CD20+ B": ["MS4A1", "IL4R", "IGHD", "FCRL1", "IGHM"],
            "B cells": ["MS4A1", "ITGB1", "COL4A4", "PRDM1", "IRF4", "PAX5", "BCL11A", "BLK", "IGHD", "IGHM"],
            "Plasma cells": ["MZB1", "HSP90B1", "FNDC3B", "PRDM1", "IGKC", "JCHAIN"],
            "Plasmablast": ["XBP1", "PRDM1", "PAX5"],
            "CD4+ T": ["CD4", "IL7R", "TRBC2"],
            "CD8+ T": ["CD8A", "CD8B", "GZMK", "GZMA", "CCL5", "GZMB", "GZMH", "GZMA"],
            "T naive": ["LEF1", "CCR7", "TCF7"],
            "pDC": ["GZMB", "IL3RA", "COBLL1", "TCF4"],
        }
    
    # Perform multi-resolution clustering
    for res in resolutions:
        sc.tl.leiden(
            adata, key_added=f"leiden_res_{res:4.2f}", resolution=res, flavor="igraph"
        )
    
    # Plot multi-resolution clustering
    cluster_keys = [f"leiden_res_{res:4.2f}" for res in resolutions]
    plt.figure(figsize=(15, 5))
    sc.pl.umap(
        adata,
        color=cluster_keys,
        legend_loc="on data",
    )
    multiresolution_path = OUTPUT_DIR / f"{out_prefix}_multiresolution_clusters.png"
    plt.savefig(multiresolution_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Check if groupby_key exists, if not use first resolution
    if groupby_key not in adata.obs.columns:
        groupby_key = cluster_keys[1] if len(cluster_keys) > 1 else cluster_keys[0]
    
    # Plot marker genes
    # Filter marker genes to only include those present in the data
    available_markers = {}
    for cell_type, genes in marker_genes.items():
        available_genes = [g for g in genes if g in adata.var_names]
        if available_genes:
            available_markers[cell_type] = available_genes
    
    if available_markers:
        plt.figure(figsize=(12, 8))
        sc.pl.dotplot(adata, available_markers, groupby=groupby_key, standard_scale="var")
        marker_path = OUTPUT_DIR / f"{out_prefix}_marker_genes.png"
        plt.savefig(marker_path, dpi=300, bbox_inches='tight')
        plt.close()
        marker_artifacts = [{"description": "Marker genes dotplot", "path": str(marker_path.resolve())}]
    else:
        marker_artifacts = []
    
    # Differential expression analysis
    sc.tl.rank_genes_groups(adata, groupby=groupby_key, method=method)
    
    # Plot top differentially expressed genes
    plt.figure(figsize=(10, 8))
    sc.pl.rank_genes_groups_dotplot(
        adata, groupby=groupby_key, standard_scale="var", n_genes=n_genes
    )
    de_path = OUTPUT_DIR / f"{out_prefix}_differential_expression.png"
    plt.savefig(de_path, dpi=300, bbox_inches='tight')
    plt.close()
    
    # Create manual cell type annotations for coarse resolution
    coarse_key = f"leiden_res_{resolutions[0]:4.2f}"
    if coarse_key in adata.obs.columns:
        adata.obs["cell_type_lvl1"] = adata.obs[coarse_key].map({
            "0": "Lymphocytes", 
            "1": "Monocytes",
            "2": "Erythroid",
            "3": "B Cells",
        })
    
    # Save annotated data
    output_file = OUTPUT_DIR / f"{out_prefix}_annotated.h5ad"
    adata.write_h5ad(output_file)
    
    # Export differential expression results
    de_results = []
    for cluster in adata.obs[groupby_key].unique():
        cluster_genes = sc.get.rank_genes_groups_df(adata, group=cluster).head(n_genes)
        cluster_genes['cluster'] = cluster
        de_results.append(cluster_genes)
    
    if de_results:
        de_df = pd.concat(de_results, ignore_index=True)
        de_path_csv = OUTPUT_DIR / f"{out_prefix}_differential_genes.csv"
        de_df.to_csv(de_path_csv, index=False)
        de_artifacts = [{"description": "Differential expression genes", "path": str(de_path_csv.resolve())}]
    else:
        de_artifacts = []
    
    # Create annotation summary
    annotation_summary = pd.DataFrame({
        'resolution': resolutions,
        'n_clusters': [len(adata.obs[f"leiden_res_{res:4.2f}"].unique()) for res in resolutions]
    })
    summary_path = OUTPUT_DIR / f"{out_prefix}_annotation_summary.csv"
    annotation_summary.to_csv(summary_path, index=False)
    
    artifacts = [
        {
            "description": "Multi-resolution clustering",
            "path": str(multiresolution_path.resolve())
        },
        {
            "description": "Differential expression plot",
            "path": str(de_path.resolve())
        },
        {
            "description": "Annotated data",
            "path": str(output_file.resolve())
        },
        {
            "description": "Annotation summary",
            "path": str(summary_path.resolve())
        }
    ] + marker_artifacts + de_artifacts
    
    return {
        "message": f"Cell type annotation completed with {len(resolutions)} resolutions and marker analysis",
        "reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
        "artifacts": artifacts
    }
    
    
@clustering_mcp.prompt
def preprocess_and_cluster_scanpy(data_path: str) -> str:
    """
    Complete preprocessing and clustering pipeline for single-cell RNA sequencing data analysis.
    
    This comprehensive workflow performs all essential steps for analyzing scRNA-seq data from raw counts 
    to cell type annotation, following the standard Scanpy tutorial for single-cell analysis.
    """
    return f"""
Execute a complete single-cell RNA-seq preprocessing and clustering pipeline on {data_path}.

First inspect the data to understand:
- Dataset size and complexity
- Organism (human/mouse) from gene names
- Batch information in adata.obs (e.g., "sample", "batch", "donor", "experiment", "condition")
- Data quality distribution

IMPORTANT: Adapt parameters intelligently based on data characteristics. 
Stick to the defaults if there is no strong reason (e.g. unchanged leads to false results) to change.

Then run the pipeline sequentially, making smart parameter choices:

1. **quality_control** - Examine data and adapt:
   - data_path="{data_path}"
   - batch_key: Set if batch columns exist (for batch-aware doublet detection)
   - mt_prefix: "MT-" (human) or "Mt-" (mouse) based on gene names
   - min_genes/min_cells: Adjust based on quality distributions
   - Review QC plots before proceeding

2. **normalize_data** - Use QC output:
   - target_sum: None (median) or 10000 (CP10K)

3. **select_features** - Feature selection:
   - batch_key: Use same as step 1 if batches present
   - n_top_genes: 2000-3000 based on complexity
   - flavor: "seurat" or "seurat_v3" for high dropout

4. **reduce_dimensionality** - PCA analysis:
   - n_comps: 50 (or less for small datasets)
   - Review variance plot for optimal PC selection
   - color_vars: Include relevant metadata

5. **build_neighborhood_graph** - Graph construction:
   - n_pcs: Based on elbow in variance plot (20-40)
   - n_neighbors: 10-30 based on dataset size
   - Check UMAP for batch effects

6. **cluster_cells** - Clustering:
   - resolution: 0.1-0.4 (broad) or 0.6-1.5 (fine)
   - Based on expected cell type diversity

7. **annotate_cell_types** - Annotation:
   - resolutions: Test multiple [low, medium, high]
   - marker_genes: Provide tissue-specific markers if known
   - Validate with marker expression

KEY DECISIONS:
- Identify and consistently use batch_key throughout if batches exist
- Adjust all thresholds based on data quality
- Validate each step before proceeding
- Document any anomalies or batch effects

The pipeline produces a fully annotated dataset with QC metrics, embeddings, clusters, and cell type markers.
"""