Spaces:
Running
Running
File size: 31,312 Bytes
ffcb052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
"""
Scanpy tutorial for single-cell RNA sequencing preprocessing and clustering analysis.
This MCP Server provides 7 tools:
1. quality_control: Calculate and visualize QC metrics, filter cells and genes, detect doublets
2. normalize_data: Normalize count data with median total counts and log transformation
3. select_features: Identify highly variable genes for feature selection
4. reduce_dimensionality: Perform PCA analysis and variance visualization
5. build_neighborhood_graph: Construct nearest neighbor graph and UMAP embedding
6. cluster_cells: Perform Leiden clustering with visualization
7. annotate_cell_types: Multi-resolution clustering, marker gene analysis, and differential expression
All tools extracted from `https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb`.
"""
# Standard imports
from typing import Annotated, Literal, Any
import pandas as pd
import numpy as np
from pathlib import Path
import os
from fastmcp import FastMCP
from datetime import datetime
import matplotlib.pyplot as plt
# Scanpy and related imports
import scanpy as sc
import anndata as ad
# Base persistent directory (HF Spaces guarantees /data is writable & persistent)
BASE_DIR = Path("/data")
DEFAULT_INPUT_DIR = BASE_DIR / "tmp_inputs"
DEFAULT_OUTPUT_DIR = BASE_DIR / "tmp_outputs"
INPUT_DIR = Path(os.environ.get("CLUSTERING_INPUT_DIR", DEFAULT_INPUT_DIR))
OUTPUT_DIR = Path(os.environ.get("CLUSTERING_OUTPUT_DIR", DEFAULT_OUTPUT_DIR))
# Ensure directories exist
INPUT_DIR.mkdir(parents=True, exist_ok=True)
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# Timestamp for unique outputs
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# MCP server instance
clustering_mcp = FastMCP(name="clustering")
# Set scanpy figure parameters
sc.settings.set_figure_params(dpi=300, facecolor="white")
@clustering_mcp.tool
def quality_control(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file or directory with 10X data. The h5ad file should contain raw count data in AnnData format."] = None,
# Analysis parameters with tutorial defaults
mt_prefix: Annotated[str, "Prefix for mitochondrial genes"] = "MT-",
ribo_prefixes: Annotated[list, "Prefixes for ribosomal genes"] = ["RPS", "RPL"],
hb_pattern: Annotated[str, "Pattern for hemoglobin genes"] = "^HB[^(P)]",
min_genes: Annotated[int, "Minimum number of genes expressed per cell"] = 100,
min_cells: Annotated[int, "Minimum number of cells expressing a gene"] = 3,
batch_key: Annotated[str | None, "Column name in adata.obs for batch information"] = None,
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Calculate quality control metrics, visualize QC distributions, and filter low-quality cells and genes.
Input is single-cell count data in AnnData format and output is QC plots, filtered data, and doublet scores.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file or 10X data directory must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"qc_{timestamp}"
# Load data
data_path = Path(data_path)
if data_path.is_dir():
# Assume 10X directory format
adata = sc.read_10x_mtx(data_path)
adata.var_names_make_unique()
elif data_path.suffix in ['.h5', '.h5ad']:
if data_path.suffix == '.h5':
adata = sc.read_10x_h5(data_path)
adata.var_names_make_unique()
else:
adata = ad.read_h5ad(data_path)
else:
raise ValueError("data_path must be a directory with 10X data or h5/h5ad file")
# Define gene categories
adata.var["mt"] = adata.var_names.str.startswith(mt_prefix)
adata.var["ribo"] = adata.var_names.str.startswith(tuple(ribo_prefixes))
adata.var["hb"] = adata.var_names.str.contains(hb_pattern)
# Calculate QC metrics
sc.pp.calculate_qc_metrics(
adata, qc_vars=["mt", "ribo", "hb"], inplace=True, log1p=True
)
# Create QC violin plots
plt.figure(figsize=(12, 4))
sc.pl.violin(
adata,
["n_genes_by_counts", "total_counts", "pct_counts_mt"],
jitter=0.4,
multi_panel=True,
)
violin_path = OUTPUT_DIR / f"{out_prefix}_qc_violin.png"
plt.savefig(violin_path, dpi=300, bbox_inches='tight')
plt.close()
# Create QC scatter plot
plt.figure(figsize=(8, 6))
sc.pl.scatter(adata, "total_counts", "n_genes_by_counts", color="pct_counts_mt")
scatter_path = OUTPUT_DIR / f"{out_prefix}_qc_scatter.png"
plt.savefig(scatter_path, dpi=300, bbox_inches='tight')
plt.close()
# Filter cells and genes
print(f"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes")
sc.pp.filter_cells(adata, min_genes=min_genes)
sc.pp.filter_genes(adata, min_cells=min_cells)
print(f"After filtering: {adata.n_obs} cells, {adata.n_vars} genes")
# Doublet detection
if batch_key and batch_key in adata.obs.columns:
sc.pp.scrublet(adata, batch_key=batch_key)
else:
sc.pp.scrublet(adata)
# Save processed data
output_file = OUTPUT_DIR / f"{out_prefix}_qc_processed.h5ad"
adata.write_h5ad(output_file)
# Save QC metrics summary
qc_summary = pd.DataFrame({
'metric': ['n_obs', 'n_vars', 'mean_n_genes_by_counts', 'mean_total_counts', 'mean_pct_counts_mt', 'doublet_rate'],
'value': [
adata.n_obs,
adata.n_vars,
adata.obs['n_genes_by_counts'].mean(),
adata.obs['total_counts'].mean(),
adata.obs['pct_counts_mt'].mean(),
adata.obs['predicted_doublet'].sum() / adata.n_obs
]
})
qc_summary_path = OUTPUT_DIR / f"{out_prefix}_qc_summary.csv"
qc_summary.to_csv(qc_summary_path, index=False)
return {
"message": f"Quality control completed for {adata.n_obs} cells and {adata.n_vars} genes",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": [
{
"description": "QC violin plots",
"path": str(violin_path.resolve())
},
{
"description": "QC scatter plot",
"path": str(scatter_path.resolve())
},
{
"description": "QC processed data",
"path": str(output_file.resolve())
},
{
"description": "QC metrics summary",
"path": str(qc_summary_path.resolve())
}
]
}
@clustering_mcp.tool
def normalize_data(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with QC-processed single-cell data. Should be output from quality_control tool."],
# Analysis parameters with tutorial defaults
target_sum: Annotated[float | None, "Target sum for normalization. None uses median total counts"] = None,
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Normalize count data using median total counts scaling followed by log1p transformation.
Input is quality-controlled AnnData object and output is normalized expression data.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"normalized_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Saving count data
adata.layers["counts"] = adata.X.copy()
# Normalizing to median total counts (or target_sum if specified)
sc.pp.normalize_total(adata, target_sum=target_sum)
# Logarithmize the data
sc.pp.log1p(adata)
# Save normalized data
output_file = OUTPUT_DIR / f"{out_prefix}_normalized.h5ad"
adata.write_h5ad(output_file)
# Create normalization summary
import numpy as np
from scipy import sparse
# Handle sparse matrices properly
if sparse.issparse(adata.layers["counts"]):
counts_mean = adata.layers["counts"].mean()
counts_std = np.sqrt(adata.layers["counts"].multiply(adata.layers["counts"]).mean() - counts_mean**2)
else:
counts_mean = np.mean(adata.layers["counts"])
counts_std = np.std(adata.layers["counts"])
if sparse.issparse(adata.X):
x_mean = adata.X.mean()
x_std = np.sqrt(adata.X.multiply(adata.X).mean() - x_mean**2)
else:
x_mean = np.mean(adata.X)
x_std = np.std(adata.X)
norm_summary = pd.DataFrame({
'layer': ['raw_counts', 'normalized_log1p'],
'mean_expression': [float(counts_mean), float(x_mean)],
'std_expression': [float(counts_std), float(x_std)]
})
summary_path = OUTPUT_DIR / f"{out_prefix}_normalization_summary.csv"
norm_summary.to_csv(summary_path, index=False)
return {
"message": f"Data normalized with log1p transformation for {adata.n_obs} cells",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": [
{
"description": "Normalized data",
"path": str(output_file.resolve())
},
{
"description": "Normalization summary",
"path": str(summary_path.resolve())
}
]
}
@clustering_mcp.tool
def select_features(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with normalized single-cell data. Should be output from normalize_data tool."],
# Analysis parameters with tutorial defaults
n_top_genes: Annotated[int, "Number of highly variable genes to select"] = 2000,
batch_key: Annotated[str | None, "Column name in adata.obs for batch correction"] = None,
flavor: Annotated[Literal["seurat", "cell_ranger", "seurat_v3"], "Method for highly variable gene selection"] = "seurat",
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Identify highly variable genes for feature selection using specified method.
Input is normalized AnnData object and output is feature selection plot and filtered data.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"features_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Find highly variable genes
if batch_key and batch_key in adata.obs.columns:
sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, batch_key=batch_key, flavor=flavor)
else:
sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, flavor=flavor)
# Plot highly variable genes
plt.figure(figsize=(10, 6))
sc.pl.highly_variable_genes(adata)
plot_path = OUTPUT_DIR / f"{out_prefix}_highly_variable_genes.png"
plt.savefig(plot_path, dpi=300, bbox_inches='tight')
plt.close()
# Save data with feature selection
output_file = OUTPUT_DIR / f"{out_prefix}_feature_selected.h5ad"
adata.write_h5ad(output_file)
# Create feature selection summary
n_highly_var = adata.var['highly_variable'].sum()
feature_summary = pd.DataFrame({
'metric': ['total_genes', 'highly_variable_genes', 'selection_fraction'],
'value': [
adata.n_vars,
n_highly_var,
n_highly_var / adata.n_vars
]
})
summary_path = OUTPUT_DIR / f"{out_prefix}_feature_summary.csv"
feature_summary.to_csv(summary_path, index=False)
return {
"message": f"Selected {n_highly_var} highly variable genes from {adata.n_vars} total genes",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": [
{
"description": "Highly variable genes plot",
"path": str(plot_path.resolve())
},
{
"description": "Feature selected data",
"path": str(output_file.resolve())
},
{
"description": "Feature selection summary",
"path": str(summary_path.resolve())
}
]
}
@clustering_mcp.tool
def reduce_dimensionality(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with feature-selected data. Should be output from select_features tool."],
# Analysis parameters with tutorial defaults
n_comps: Annotated[int, "Number of principal components to compute"] = 50,
use_highly_variable: Annotated[bool, "Whether to use only highly variable genes"] = True,
n_pcs_plot: Annotated[int, "Number of PCs to show in variance plot"] = 50,
color_vars: Annotated[list, "Variables to color PCA plot by"] = ["sample", "pct_counts_mt"],
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Perform principal component analysis for dimensionality reduction and visualization.
Input is feature-selected AnnData object and output is PCA embeddings and variance plots.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"pca_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Perform PCA
sc.tl.pca(adata, n_comps=n_comps, use_highly_variable=use_highly_variable)
# Plot PCA variance ratio
plt.figure(figsize=(10, 6))
sc.pl.pca_variance_ratio(adata, n_pcs=n_pcs_plot, log=True)
variance_path = OUTPUT_DIR / f"{out_prefix}_pca_variance.png"
plt.savefig(variance_path, dpi=300, bbox_inches='tight')
plt.close()
# Plot PCA colored by specified variables
available_vars = [var for var in color_vars if var in adata.obs.columns]
if available_vars:
# Create combinations for plotting
plot_colors = []
plot_dims = []
for var in available_vars[:2]: # Limit to 2 variables to match tutorial
plot_colors.extend([var, var])
plot_dims.extend([(0, 1), (2, 3)])
plt.figure(figsize=(12, 8))
sc.pl.pca(
adata,
color=plot_colors,
dimensions=plot_dims,
ncols=2,
size=2,
)
pca_path = OUTPUT_DIR / f"{out_prefix}_pca_colored.png"
plt.savefig(pca_path, dpi=300, bbox_inches='tight')
plt.close()
pca_artifacts = [{"description": "PCA colored by variables", "path": str(pca_path.resolve())}]
else:
pca_artifacts = []
# Save data with PCA
output_file = OUTPUT_DIR / f"{out_prefix}_pca.h5ad"
adata.write_h5ad(output_file)
# Create PCA summary
pca_summary = pd.DataFrame({
'PC': [f'PC{i+1}' for i in range(min(10, n_comps))],
'variance_ratio': adata.uns['pca']['variance_ratio'][:min(10, n_comps)]
})
summary_path = OUTPUT_DIR / f"{out_prefix}_pca_summary.csv"
pca_summary.to_csv(summary_path, index=False)
artifacts = [
{
"description": "PCA variance plot",
"path": str(variance_path.resolve())
},
{
"description": "PCA processed data",
"path": str(output_file.resolve())
},
{
"description": "PCA summary",
"path": str(summary_path.resolve())
}
] + pca_artifacts
return {
"message": f"PCA completed with {n_comps} components explaining {adata.uns['pca']['variance_ratio'].sum():.2%} variance",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": artifacts
}
@clustering_mcp.tool
def build_neighborhood_graph(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with PCA data. Should be output from reduce_dimensionality tool."],
# Analysis parameters with tutorial defaults
n_neighbors: Annotated[int, "Number of neighbors for graph construction"] = 15,
n_pcs: Annotated[int, "Number of principal components to use"] = None,
color_by: Annotated[str, "Variable to color UMAP by"] = "sample",
point_size: Annotated[float, "Point size for UMAP plot"] = 2,
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Build nearest neighbor graph from PCA space and compute UMAP embedding for visualization.
Input is PCA-processed AnnData object and output is neighbor graph, UMAP embedding, and visualization.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"neighbors_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Compute the neighborhood graph
sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=n_pcs)
# Compute UMAP
sc.tl.umap(adata)
# Plot UMAP
if color_by in adata.obs.columns:
plt.figure(figsize=(8, 6))
sc.pl.umap(adata, color=color_by, size=point_size)
umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
plt.savefig(umap_path, dpi=300, bbox_inches='tight')
plt.close()
else:
# Plot without coloring if variable doesn't exist
plt.figure(figsize=(8, 6))
sc.pl.umap(adata, size=point_size)
umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
plt.savefig(umap_path, dpi=300, bbox_inches='tight')
plt.close()
# Save data with neighborhood graph and UMAP
output_file = OUTPUT_DIR / f"{out_prefix}_neighbors.h5ad"
adata.write_h5ad(output_file)
# Create neighborhood summary
neighbor_summary = pd.DataFrame({
'metric': ['n_neighbors', 'n_pcs_used', 'umap_dimensions'],
'value': [n_neighbors, n_pcs, adata.obsm['X_umap'].shape[1]]
})
summary_path = OUTPUT_DIR / f"{out_prefix}_neighbor_summary.csv"
neighbor_summary.to_csv(summary_path, index=False)
return {
"message": f"Neighborhood graph and UMAP completed for {adata.n_obs} cells",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": [
{
"description": "UMAP visualization",
"path": str(umap_path.resolve())
},
{
"description": "Neighborhood graph data",
"path": str(output_file.resolve())
},
{
"description": "Neighborhood summary",
"path": str(summary_path.resolve())
}
]
}
@clustering_mcp.tool
def cluster_cells(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with neighborhood graph. Should be output from build_neighborhood_graph tool."],
# Analysis parameters with tutorial defaults
resolution: Annotated[float, "Resolution parameter for Leiden clustering"] = 0.5,
flavor: Annotated[Literal["igraph", "leidenalg"], "Leiden algorithm implementation"] = "igraph",
n_iterations: Annotated[int, "Number of iterations for clustering"] = 2,
cluster_key: Annotated[str, "Key name for storing clusters in adata.obs"] = "leiden",
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Perform Leiden clustering on the neighborhood graph and visualize results.
Input is AnnData with neighborhood graph and output is clustered data with UMAP visualization.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"clusters_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Perform Leiden clustering
sc.tl.leiden(
adata,
resolution=resolution,
flavor=flavor,
n_iterations=n_iterations,
key_added=cluster_key
)
# Plot UMAP colored by clusters
plt.figure(figsize=(8, 6))
sc.pl.umap(adata, color=[cluster_key])
cluster_path = OUTPUT_DIR / f"{out_prefix}_clusters_umap.png"
plt.savefig(cluster_path, dpi=300, bbox_inches='tight')
plt.close()
# Save clustered data
output_file = OUTPUT_DIR / f"{out_prefix}_clustered.h5ad"
adata.write_h5ad(output_file)
# Create clustering summary
n_clusters = len(adata.obs[cluster_key].unique())
cluster_counts = adata.obs[cluster_key].value_counts().sort_index()
cluster_summary = pd.DataFrame({
'cluster': cluster_counts.index,
'n_cells': cluster_counts.values,
'fraction': cluster_counts.values / adata.n_obs
})
summary_path = OUTPUT_DIR / f"{out_prefix}_cluster_summary.csv"
cluster_summary.to_csv(summary_path, index=False)
return {
"message": f"Leiden clustering identified {n_clusters} clusters at resolution {resolution}",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": [
{
"description": "Clusters UMAP plot",
"path": str(cluster_path.resolve())
},
{
"description": "Clustered data",
"path": str(output_file.resolve())
},
{
"description": "Cluster summary",
"path": str(summary_path.resolve())
}
]
}
@clustering_mcp.tool
def annotate_cell_types(
# Primary data inputs
data_path: Annotated[str, "Path to h5ad file with clustered data. Should be output from cluster_cells tool."],
# Analysis parameters with tutorial defaults
resolutions: Annotated[list, "List of resolutions for multi-resolution clustering"] = [0.02, 0.5, 2.0],
groupby_key: Annotated[str, "Clustering key to use for marker analysis"] = "leiden_res_0.50",
method: Annotated[Literal["wilcoxon", "t-test", "logreg"], "Method for differential expression"] = "wilcoxon",
n_genes: Annotated[int, "Number of top genes to show in plots"] = 5,
marker_genes: Annotated[dict | None, "Dictionary of cell type marker genes"] = None,
out_prefix: Annotated[str | None, "Output file prefix"] = None,
) -> dict:
"""
Perform multi-resolution clustering, marker gene analysis, and differential expression for cell type annotation.
Input is clustered AnnData object and output is multi-resolution plots, marker analysis, and differential expression results.
"""
# Validate exactly one input
if data_path is None:
raise ValueError("Path to h5ad file must be provided")
# Set output prefix
if out_prefix is None:
out_prefix = f"annotation_{timestamp}"
# Load data
adata = ad.read_h5ad(data_path)
# Define default marker genes if not provided
if marker_genes is None:
marker_genes = {
"CD14+ Mono": ["FCN1", "CD14"],
"CD16+ Mono": ["TCF7L2", "FCGR3A", "LYN"],
"cDC2": ["CST3", "COTL1", "LYZ", "DMXL2", "CLEC10A", "FCER1A"],
"Erythroblast": ["MKI67", "HBA1", "HBB"],
"Proerythroblast": ["CDK6", "SYNGR1", "HBM", "GYPA"],
"NK": ["GNLY", "NKG7", "CD247", "FCER1G", "TYROBP", "KLRG1", "FCGR3A"],
"ILC": ["ID2", "PLCG2", "GNLY", "SYNE1"],
"Naive CD20+ B": ["MS4A1", "IL4R", "IGHD", "FCRL1", "IGHM"],
"B cells": ["MS4A1", "ITGB1", "COL4A4", "PRDM1", "IRF4", "PAX5", "BCL11A", "BLK", "IGHD", "IGHM"],
"Plasma cells": ["MZB1", "HSP90B1", "FNDC3B", "PRDM1", "IGKC", "JCHAIN"],
"Plasmablast": ["XBP1", "PRDM1", "PAX5"],
"CD4+ T": ["CD4", "IL7R", "TRBC2"],
"CD8+ T": ["CD8A", "CD8B", "GZMK", "GZMA", "CCL5", "GZMB", "GZMH", "GZMA"],
"T naive": ["LEF1", "CCR7", "TCF7"],
"pDC": ["GZMB", "IL3RA", "COBLL1", "TCF4"],
}
# Perform multi-resolution clustering
for res in resolutions:
sc.tl.leiden(
adata, key_added=f"leiden_res_{res:4.2f}", resolution=res, flavor="igraph"
)
# Plot multi-resolution clustering
cluster_keys = [f"leiden_res_{res:4.2f}" for res in resolutions]
plt.figure(figsize=(15, 5))
sc.pl.umap(
adata,
color=cluster_keys,
legend_loc="on data",
)
multiresolution_path = OUTPUT_DIR / f"{out_prefix}_multiresolution_clusters.png"
plt.savefig(multiresolution_path, dpi=300, bbox_inches='tight')
plt.close()
# Check if groupby_key exists, if not use first resolution
if groupby_key not in adata.obs.columns:
groupby_key = cluster_keys[1] if len(cluster_keys) > 1 else cluster_keys[0]
# Plot marker genes
# Filter marker genes to only include those present in the data
available_markers = {}
for cell_type, genes in marker_genes.items():
available_genes = [g for g in genes if g in adata.var_names]
if available_genes:
available_markers[cell_type] = available_genes
if available_markers:
plt.figure(figsize=(12, 8))
sc.pl.dotplot(adata, available_markers, groupby=groupby_key, standard_scale="var")
marker_path = OUTPUT_DIR / f"{out_prefix}_marker_genes.png"
plt.savefig(marker_path, dpi=300, bbox_inches='tight')
plt.close()
marker_artifacts = [{"description": "Marker genes dotplot", "path": str(marker_path.resolve())}]
else:
marker_artifacts = []
# Differential expression analysis
sc.tl.rank_genes_groups(adata, groupby=groupby_key, method=method)
# Plot top differentially expressed genes
plt.figure(figsize=(10, 8))
sc.pl.rank_genes_groups_dotplot(
adata, groupby=groupby_key, standard_scale="var", n_genes=n_genes
)
de_path = OUTPUT_DIR / f"{out_prefix}_differential_expression.png"
plt.savefig(de_path, dpi=300, bbox_inches='tight')
plt.close()
# Create manual cell type annotations for coarse resolution
coarse_key = f"leiden_res_{resolutions[0]:4.2f}"
if coarse_key in adata.obs.columns:
adata.obs["cell_type_lvl1"] = adata.obs[coarse_key].map({
"0": "Lymphocytes",
"1": "Monocytes",
"2": "Erythroid",
"3": "B Cells",
})
# Save annotated data
output_file = OUTPUT_DIR / f"{out_prefix}_annotated.h5ad"
adata.write_h5ad(output_file)
# Export differential expression results
de_results = []
for cluster in adata.obs[groupby_key].unique():
cluster_genes = sc.get.rank_genes_groups_df(adata, group=cluster).head(n_genes)
cluster_genes['cluster'] = cluster
de_results.append(cluster_genes)
if de_results:
de_df = pd.concat(de_results, ignore_index=True)
de_path_csv = OUTPUT_DIR / f"{out_prefix}_differential_genes.csv"
de_df.to_csv(de_path_csv, index=False)
de_artifacts = [{"description": "Differential expression genes", "path": str(de_path_csv.resolve())}]
else:
de_artifacts = []
# Create annotation summary
annotation_summary = pd.DataFrame({
'resolution': resolutions,
'n_clusters': [len(adata.obs[f"leiden_res_{res:4.2f}"].unique()) for res in resolutions]
})
summary_path = OUTPUT_DIR / f"{out_prefix}_annotation_summary.csv"
annotation_summary.to_csv(summary_path, index=False)
artifacts = [
{
"description": "Multi-resolution clustering",
"path": str(multiresolution_path.resolve())
},
{
"description": "Differential expression plot",
"path": str(de_path.resolve())
},
{
"description": "Annotated data",
"path": str(output_file.resolve())
},
{
"description": "Annotation summary",
"path": str(summary_path.resolve())
}
] + marker_artifacts + de_artifacts
return {
"message": f"Cell type annotation completed with {len(resolutions)} resolutions and marker analysis",
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
"artifacts": artifacts
}
@clustering_mcp.prompt
def preprocess_and_cluster_scanpy(data_path: str) -> str:
"""
Complete preprocessing and clustering pipeline for single-cell RNA sequencing data analysis.
This comprehensive workflow performs all essential steps for analyzing scRNA-seq data from raw counts
to cell type annotation, following the standard Scanpy tutorial for single-cell analysis.
"""
return f"""
Execute a complete single-cell RNA-seq preprocessing and clustering pipeline on {data_path}.
First inspect the data to understand:
- Dataset size and complexity
- Organism (human/mouse) from gene names
- Batch information in adata.obs (e.g., "sample", "batch", "donor", "experiment", "condition")
- Data quality distribution
IMPORTANT: Adapt parameters intelligently based on data characteristics.
Stick to the defaults if there is no strong reason (e.g. unchanged leads to false results) to change.
Then run the pipeline sequentially, making smart parameter choices:
1. **quality_control** - Examine data and adapt:
- data_path="{data_path}"
- batch_key: Set if batch columns exist (for batch-aware doublet detection)
- mt_prefix: "MT-" (human) or "Mt-" (mouse) based on gene names
- min_genes/min_cells: Adjust based on quality distributions
- Review QC plots before proceeding
2. **normalize_data** - Use QC output:
- target_sum: None (median) or 10000 (CP10K)
3. **select_features** - Feature selection:
- batch_key: Use same as step 1 if batches present
- n_top_genes: 2000-3000 based on complexity
- flavor: "seurat" or "seurat_v3" for high dropout
4. **reduce_dimensionality** - PCA analysis:
- n_comps: 50 (or less for small datasets)
- Review variance plot for optimal PC selection
- color_vars: Include relevant metadata
5. **build_neighborhood_graph** - Graph construction:
- n_pcs: Based on elbow in variance plot (20-40)
- n_neighbors: 10-30 based on dataset size
- Check UMAP for batch effects
6. **cluster_cells** - Clustering:
- resolution: 0.1-0.4 (broad) or 0.6-1.5 (fine)
- Based on expected cell type diversity
7. **annotate_cell_types** - Annotation:
- resolutions: Test multiple [low, medium, high]
- marker_genes: Provide tissue-specific markers if known
- Validate with marker expression
KEY DECISIONS:
- Identify and consistently use batch_key throughout if batches exist
- Adjust all thresholds based on data quality
- Validate each step before proceeding
- Document any anomalies or batch effects
The pipeline produces a fully annotated dataset with QC metrics, embeddings, clusters, and cell type markers.
""" |