Spaces:
Running
Running
Upload 5 files
Browse files- Dockerfile +11 -0
- README.md +3 -5
- requirements.txt +14 -0
- scanpy_mcp.py +83 -0
- tools/clustering.py +800 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.12
|
2 |
+
WORKDIR /app
|
3 |
+
COPY requirements.txt .
|
4 |
+
RUN mkdir -p /tmp/numba_cache && chmod -R 777 /tmp/numba_cache
|
5 |
+
ENV NUMBA_CACHE_DIR=/tmp/numba_cache
|
6 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
+
COPY scanpy_mcp.py .
|
8 |
+
COPY tools/ tools/
|
9 |
+
RUN mkdir -p /app/data/upload /data/tmp_inputs /data/tmp_outputs && chmod -R 777 /app/data/upload /data
|
10 |
+
EXPOSE 7860
|
11 |
+
CMD ["uvicorn", "scanpy_mcp:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
CHANGED
@@ -1,12 +1,10 @@
|
|
1 |
---
|
2 |
title: Scanpy Mcp
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: docker
|
7 |
pinned: false
|
8 |
-
license: bsd-3-clause
|
9 |
-
short_description: Paper2Agent-generated MCP server
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Scanpy Mcp
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
sdk: docker
|
7 |
pinned: false
|
|
|
|
|
8 |
---
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
anndata
|
2 |
+
datetime
|
3 |
+
fastmcp
|
4 |
+
matplotlib
|
5 |
+
numpy
|
6 |
+
pandas
|
7 |
+
pathlib
|
8 |
+
scanpy
|
9 |
+
typing
|
10 |
+
uv
|
11 |
+
uvicorn
|
12 |
+
scikit-image
|
13 |
+
fastapi
|
14 |
+
starlette==0.47.3
|
scanpy_mcp.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Model Context Protocol (MCP) for scanpy
|
3 |
+
|
4 |
+
Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata.
|
5 |
+
It provides preprocessing, visualization, clustering, pseudotime and trajectory inference, differential expression testing, and integration of heterogeneous datasets.
|
6 |
+
This codebase focuses on fundamental single-cell RNA sequencing analysis workflows including quality control, normalization, dimensionality reduction, and clustering.
|
7 |
+
|
8 |
+
This MCP Server contains the tools extracted from the following tutorials:
|
9 |
+
1. clustering
|
10 |
+
- quality_control: Calculate and visualize QC metrics, filter cells and genes, detect doublets
|
11 |
+
- normalize_data: Normalize count data with median total counts and log transformation
|
12 |
+
- select_features: Identify highly variable genes for feature selection
|
13 |
+
- reduce_dimensionality: Perform PCA analysis and variance visualization
|
14 |
+
- build_neighborhood_graph: Construct nearest neighbor graph and UMAP embedding
|
15 |
+
- cluster_cells: Perform Leiden clustering with visualization
|
16 |
+
- annotate_cell_types: Multi-resolution clustering, marker gene analysis, and differential expression
|
17 |
+
"""
|
18 |
+
|
19 |
+
import sys
|
20 |
+
from pathlib import Path
|
21 |
+
from fastmcp import FastMCP
|
22 |
+
from starlette.requests import Request
|
23 |
+
from starlette.responses import PlainTextResponse, JSONResponse
|
24 |
+
import os
|
25 |
+
from fastapi.staticfiles import StaticFiles
|
26 |
+
import uuid
|
27 |
+
import os
|
28 |
+
|
29 |
+
|
30 |
+
# Import the MCP tools from the tools folder
|
31 |
+
from tools.clustering import clustering_mcp
|
32 |
+
|
33 |
+
# Define the MCP server
|
34 |
+
mcp = FastMCP(name = "scanpy")
|
35 |
+
|
36 |
+
# Mount the tools
|
37 |
+
mcp.mount(clustering_mcp)
|
38 |
+
|
39 |
+
# Use absolute directory for uploads
|
40 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
41 |
+
UPLOAD_DIR = os.path.join(BASE_DIR, "/data/upload")
|
42 |
+
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
43 |
+
|
44 |
+
@mcp.custom_route("/health", methods=["GET"])
|
45 |
+
async def health_check(request: Request) -> PlainTextResponse:
|
46 |
+
return PlainTextResponse("OK")
|
47 |
+
|
48 |
+
|
49 |
+
@mcp.custom_route("/", methods=["GET"])
|
50 |
+
async def index(request: Request) -> PlainTextResponse:
|
51 |
+
return PlainTextResponse("MCP is on https://Paper2Agent-scanpy-mcp.hf.space/mcp")
|
52 |
+
|
53 |
+
# Upload route
|
54 |
+
@mcp.custom_route("/upload", methods=["POST"])
|
55 |
+
async def upload(request: Request):
|
56 |
+
form = await request.form()
|
57 |
+
up = form.get("file")
|
58 |
+
if up is None:
|
59 |
+
return JSONResponse({"error": "missing form field 'file'"}, status_code=400)
|
60 |
+
|
61 |
+
# Generate a safe filename
|
62 |
+
orig = getattr(up, "filename", "") or ""
|
63 |
+
ext = os.path.splitext(orig)[1]
|
64 |
+
name = f"{uuid.uuid4().hex}{ext}"
|
65 |
+
dst = os.path.join(UPLOAD_DIR, name)
|
66 |
+
|
67 |
+
# up is a Starlette UploadFile-like object
|
68 |
+
with open(dst, "wb") as out:
|
69 |
+
out.write(await up.read())
|
70 |
+
|
71 |
+
# Return only the absolute local path
|
72 |
+
abs_path = os.path.abspath(dst)
|
73 |
+
return JSONResponse({"path": abs_path})
|
74 |
+
|
75 |
+
app = mcp.http_app(path="/mcp")
|
76 |
+
# Saved uploaded input files
|
77 |
+
app.mount("/files", StaticFiles(directory=UPLOAD_DIR), name="files")
|
78 |
+
# Saved output files
|
79 |
+
app.mount("/outputs", StaticFiles(directory="/data/tmp_outputs"), name="outputs")
|
80 |
+
|
81 |
+
# Run the MCP server
|
82 |
+
if __name__ == "__main__":
|
83 |
+
mcp.run(transport="http", host="127.0.0.1", port=8003)
|
tools/clustering.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Scanpy tutorial for single-cell RNA sequencing preprocessing and clustering analysis.
|
3 |
+
|
4 |
+
This MCP Server provides 7 tools:
|
5 |
+
1. quality_control: Calculate and visualize QC metrics, filter cells and genes, detect doublets
|
6 |
+
2. normalize_data: Normalize count data with median total counts and log transformation
|
7 |
+
3. select_features: Identify highly variable genes for feature selection
|
8 |
+
4. reduce_dimensionality: Perform PCA analysis and variance visualization
|
9 |
+
5. build_neighborhood_graph: Construct nearest neighbor graph and UMAP embedding
|
10 |
+
6. cluster_cells: Perform Leiden clustering with visualization
|
11 |
+
7. annotate_cell_types: Multi-resolution clustering, marker gene analysis, and differential expression
|
12 |
+
|
13 |
+
All tools extracted from `https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb`.
|
14 |
+
"""
|
15 |
+
|
16 |
+
# Standard imports
|
17 |
+
from typing import Annotated, Literal, Any
|
18 |
+
import pandas as pd
|
19 |
+
import numpy as np
|
20 |
+
from pathlib import Path
|
21 |
+
import os
|
22 |
+
from fastmcp import FastMCP
|
23 |
+
from datetime import datetime
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
|
26 |
+
# Scanpy and related imports
|
27 |
+
import scanpy as sc
|
28 |
+
import anndata as ad
|
29 |
+
|
30 |
+
# Base persistent directory (HF Spaces guarantees /data is writable & persistent)
|
31 |
+
BASE_DIR = Path("/data")
|
32 |
+
|
33 |
+
DEFAULT_INPUT_DIR = BASE_DIR / "tmp_inputs"
|
34 |
+
DEFAULT_OUTPUT_DIR = BASE_DIR / "tmp_outputs"
|
35 |
+
|
36 |
+
INPUT_DIR = Path(os.environ.get("CLUSTERING_INPUT_DIR", DEFAULT_INPUT_DIR))
|
37 |
+
OUTPUT_DIR = Path(os.environ.get("CLUSTERING_OUTPUT_DIR", DEFAULT_OUTPUT_DIR))
|
38 |
+
|
39 |
+
# Ensure directories exist
|
40 |
+
INPUT_DIR.mkdir(parents=True, exist_ok=True)
|
41 |
+
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
42 |
+
|
43 |
+
# Timestamp for unique outputs
|
44 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
45 |
+
|
46 |
+
# MCP server instance
|
47 |
+
clustering_mcp = FastMCP(name="clustering")
|
48 |
+
|
49 |
+
# Set scanpy figure parameters
|
50 |
+
sc.settings.set_figure_params(dpi=300, facecolor="white")
|
51 |
+
|
52 |
+
@clustering_mcp.tool
|
53 |
+
def quality_control(
|
54 |
+
# Primary data inputs
|
55 |
+
data_path: Annotated[str, "Path to h5ad file or directory with 10X data. The h5ad file should contain raw count data in AnnData format."] = None,
|
56 |
+
# Analysis parameters with tutorial defaults
|
57 |
+
mt_prefix: Annotated[str, "Prefix for mitochondrial genes"] = "MT-",
|
58 |
+
ribo_prefixes: Annotated[list, "Prefixes for ribosomal genes"] = ["RPS", "RPL"],
|
59 |
+
hb_pattern: Annotated[str, "Pattern for hemoglobin genes"] = "^HB[^(P)]",
|
60 |
+
min_genes: Annotated[int, "Minimum number of genes expressed per cell"] = 100,
|
61 |
+
min_cells: Annotated[int, "Minimum number of cells expressing a gene"] = 3,
|
62 |
+
batch_key: Annotated[str | None, "Column name in adata.obs for batch information"] = None,
|
63 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
64 |
+
) -> dict:
|
65 |
+
"""
|
66 |
+
Calculate quality control metrics, visualize QC distributions, and filter low-quality cells and genes.
|
67 |
+
Input is single-cell count data in AnnData format and output is QC plots, filtered data, and doublet scores.
|
68 |
+
"""
|
69 |
+
# Validate exactly one input
|
70 |
+
if data_path is None:
|
71 |
+
raise ValueError("Path to h5ad file or 10X data directory must be provided")
|
72 |
+
|
73 |
+
# Set output prefix
|
74 |
+
if out_prefix is None:
|
75 |
+
out_prefix = f"qc_{timestamp}"
|
76 |
+
|
77 |
+
# Load data
|
78 |
+
data_path = Path(data_path)
|
79 |
+
if data_path.is_dir():
|
80 |
+
# Assume 10X directory format
|
81 |
+
adata = sc.read_10x_mtx(data_path)
|
82 |
+
adata.var_names_make_unique()
|
83 |
+
elif data_path.suffix in ['.h5', '.h5ad']:
|
84 |
+
if data_path.suffix == '.h5':
|
85 |
+
adata = sc.read_10x_h5(data_path)
|
86 |
+
adata.var_names_make_unique()
|
87 |
+
else:
|
88 |
+
adata = ad.read_h5ad(data_path)
|
89 |
+
else:
|
90 |
+
raise ValueError("data_path must be a directory with 10X data or h5/h5ad file")
|
91 |
+
|
92 |
+
# Define gene categories
|
93 |
+
adata.var["mt"] = adata.var_names.str.startswith(mt_prefix)
|
94 |
+
adata.var["ribo"] = adata.var_names.str.startswith(tuple(ribo_prefixes))
|
95 |
+
adata.var["hb"] = adata.var_names.str.contains(hb_pattern)
|
96 |
+
|
97 |
+
# Calculate QC metrics
|
98 |
+
sc.pp.calculate_qc_metrics(
|
99 |
+
adata, qc_vars=["mt", "ribo", "hb"], inplace=True, log1p=True
|
100 |
+
)
|
101 |
+
|
102 |
+
# Create QC violin plots
|
103 |
+
plt.figure(figsize=(12, 4))
|
104 |
+
sc.pl.violin(
|
105 |
+
adata,
|
106 |
+
["n_genes_by_counts", "total_counts", "pct_counts_mt"],
|
107 |
+
jitter=0.4,
|
108 |
+
multi_panel=True,
|
109 |
+
)
|
110 |
+
violin_path = OUTPUT_DIR / f"{out_prefix}_qc_violin.png"
|
111 |
+
plt.savefig(violin_path, dpi=300, bbox_inches='tight')
|
112 |
+
plt.close()
|
113 |
+
|
114 |
+
# Create QC scatter plot
|
115 |
+
plt.figure(figsize=(8, 6))
|
116 |
+
sc.pl.scatter(adata, "total_counts", "n_genes_by_counts", color="pct_counts_mt")
|
117 |
+
scatter_path = OUTPUT_DIR / f"{out_prefix}_qc_scatter.png"
|
118 |
+
plt.savefig(scatter_path, dpi=300, bbox_inches='tight')
|
119 |
+
plt.close()
|
120 |
+
|
121 |
+
# Filter cells and genes
|
122 |
+
print(f"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes")
|
123 |
+
sc.pp.filter_cells(adata, min_genes=min_genes)
|
124 |
+
sc.pp.filter_genes(adata, min_cells=min_cells)
|
125 |
+
print(f"After filtering: {adata.n_obs} cells, {adata.n_vars} genes")
|
126 |
+
|
127 |
+
# Doublet detection
|
128 |
+
if batch_key and batch_key in adata.obs.columns:
|
129 |
+
sc.pp.scrublet(adata, batch_key=batch_key)
|
130 |
+
else:
|
131 |
+
sc.pp.scrublet(adata)
|
132 |
+
|
133 |
+
# Save processed data
|
134 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_qc_processed.h5ad"
|
135 |
+
adata.write_h5ad(output_file)
|
136 |
+
|
137 |
+
# Save QC metrics summary
|
138 |
+
qc_summary = pd.DataFrame({
|
139 |
+
'metric': ['n_obs', 'n_vars', 'mean_n_genes_by_counts', 'mean_total_counts', 'mean_pct_counts_mt', 'doublet_rate'],
|
140 |
+
'value': [
|
141 |
+
adata.n_obs,
|
142 |
+
adata.n_vars,
|
143 |
+
adata.obs['n_genes_by_counts'].mean(),
|
144 |
+
adata.obs['total_counts'].mean(),
|
145 |
+
adata.obs['pct_counts_mt'].mean(),
|
146 |
+
adata.obs['predicted_doublet'].sum() / adata.n_obs
|
147 |
+
]
|
148 |
+
})
|
149 |
+
qc_summary_path = OUTPUT_DIR / f"{out_prefix}_qc_summary.csv"
|
150 |
+
qc_summary.to_csv(qc_summary_path, index=False)
|
151 |
+
|
152 |
+
return {
|
153 |
+
"message": f"Quality control completed for {adata.n_obs} cells and {adata.n_vars} genes",
|
154 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
155 |
+
"artifacts": [
|
156 |
+
{
|
157 |
+
"description": "QC violin plots",
|
158 |
+
"path": str(violin_path.resolve())
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"description": "QC scatter plot",
|
162 |
+
"path": str(scatter_path.resolve())
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"description": "QC processed data",
|
166 |
+
"path": str(output_file.resolve())
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"description": "QC metrics summary",
|
170 |
+
"path": str(qc_summary_path.resolve())
|
171 |
+
}
|
172 |
+
]
|
173 |
+
}
|
174 |
+
|
175 |
+
@clustering_mcp.tool
|
176 |
+
def normalize_data(
|
177 |
+
# Primary data inputs
|
178 |
+
data_path: Annotated[str, "Path to h5ad file with QC-processed single-cell data. Should be output from quality_control tool."],
|
179 |
+
# Analysis parameters with tutorial defaults
|
180 |
+
target_sum: Annotated[float | None, "Target sum for normalization. None uses median total counts"] = None,
|
181 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
182 |
+
) -> dict:
|
183 |
+
"""
|
184 |
+
Normalize count data using median total counts scaling followed by log1p transformation.
|
185 |
+
Input is quality-controlled AnnData object and output is normalized expression data.
|
186 |
+
"""
|
187 |
+
# Validate exactly one input
|
188 |
+
if data_path is None:
|
189 |
+
raise ValueError("Path to h5ad file must be provided")
|
190 |
+
|
191 |
+
# Set output prefix
|
192 |
+
if out_prefix is None:
|
193 |
+
out_prefix = f"normalized_{timestamp}"
|
194 |
+
|
195 |
+
# Load data
|
196 |
+
adata = ad.read_h5ad(data_path)
|
197 |
+
|
198 |
+
# Saving count data
|
199 |
+
adata.layers["counts"] = adata.X.copy()
|
200 |
+
|
201 |
+
# Normalizing to median total counts (or target_sum if specified)
|
202 |
+
sc.pp.normalize_total(adata, target_sum=target_sum)
|
203 |
+
# Logarithmize the data
|
204 |
+
sc.pp.log1p(adata)
|
205 |
+
|
206 |
+
# Save normalized data
|
207 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_normalized.h5ad"
|
208 |
+
adata.write_h5ad(output_file)
|
209 |
+
|
210 |
+
# Create normalization summary
|
211 |
+
import numpy as np
|
212 |
+
from scipy import sparse
|
213 |
+
|
214 |
+
# Handle sparse matrices properly
|
215 |
+
if sparse.issparse(adata.layers["counts"]):
|
216 |
+
counts_mean = adata.layers["counts"].mean()
|
217 |
+
counts_std = np.sqrt(adata.layers["counts"].multiply(adata.layers["counts"]).mean() - counts_mean**2)
|
218 |
+
else:
|
219 |
+
counts_mean = np.mean(adata.layers["counts"])
|
220 |
+
counts_std = np.std(adata.layers["counts"])
|
221 |
+
|
222 |
+
if sparse.issparse(adata.X):
|
223 |
+
x_mean = adata.X.mean()
|
224 |
+
x_std = np.sqrt(adata.X.multiply(adata.X).mean() - x_mean**2)
|
225 |
+
else:
|
226 |
+
x_mean = np.mean(adata.X)
|
227 |
+
x_std = np.std(adata.X)
|
228 |
+
|
229 |
+
norm_summary = pd.DataFrame({
|
230 |
+
'layer': ['raw_counts', 'normalized_log1p'],
|
231 |
+
'mean_expression': [float(counts_mean), float(x_mean)],
|
232 |
+
'std_expression': [float(counts_std), float(x_std)]
|
233 |
+
})
|
234 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_normalization_summary.csv"
|
235 |
+
norm_summary.to_csv(summary_path, index=False)
|
236 |
+
|
237 |
+
return {
|
238 |
+
"message": f"Data normalized with log1p transformation for {adata.n_obs} cells",
|
239 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
240 |
+
"artifacts": [
|
241 |
+
{
|
242 |
+
"description": "Normalized data",
|
243 |
+
"path": str(output_file.resolve())
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"description": "Normalization summary",
|
247 |
+
"path": str(summary_path.resolve())
|
248 |
+
}
|
249 |
+
]
|
250 |
+
}
|
251 |
+
|
252 |
+
@clustering_mcp.tool
|
253 |
+
def select_features(
|
254 |
+
# Primary data inputs
|
255 |
+
data_path: Annotated[str, "Path to h5ad file with normalized single-cell data. Should be output from normalize_data tool."],
|
256 |
+
# Analysis parameters with tutorial defaults
|
257 |
+
n_top_genes: Annotated[int, "Number of highly variable genes to select"] = 2000,
|
258 |
+
batch_key: Annotated[str | None, "Column name in adata.obs for batch correction"] = None,
|
259 |
+
flavor: Annotated[Literal["seurat", "cell_ranger", "seurat_v3"], "Method for highly variable gene selection"] = "seurat",
|
260 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
261 |
+
) -> dict:
|
262 |
+
"""
|
263 |
+
Identify highly variable genes for feature selection using specified method.
|
264 |
+
Input is normalized AnnData object and output is feature selection plot and filtered data.
|
265 |
+
"""
|
266 |
+
# Validate exactly one input
|
267 |
+
if data_path is None:
|
268 |
+
raise ValueError("Path to h5ad file must be provided")
|
269 |
+
|
270 |
+
# Set output prefix
|
271 |
+
if out_prefix is None:
|
272 |
+
out_prefix = f"features_{timestamp}"
|
273 |
+
|
274 |
+
# Load data
|
275 |
+
adata = ad.read_h5ad(data_path)
|
276 |
+
|
277 |
+
# Find highly variable genes
|
278 |
+
if batch_key and batch_key in adata.obs.columns:
|
279 |
+
sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, batch_key=batch_key, flavor=flavor)
|
280 |
+
else:
|
281 |
+
sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes, flavor=flavor)
|
282 |
+
|
283 |
+
# Plot highly variable genes
|
284 |
+
plt.figure(figsize=(10, 6))
|
285 |
+
sc.pl.highly_variable_genes(adata)
|
286 |
+
plot_path = OUTPUT_DIR / f"{out_prefix}_highly_variable_genes.png"
|
287 |
+
plt.savefig(plot_path, dpi=300, bbox_inches='tight')
|
288 |
+
plt.close()
|
289 |
+
|
290 |
+
# Save data with feature selection
|
291 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_feature_selected.h5ad"
|
292 |
+
adata.write_h5ad(output_file)
|
293 |
+
|
294 |
+
# Create feature selection summary
|
295 |
+
n_highly_var = adata.var['highly_variable'].sum()
|
296 |
+
feature_summary = pd.DataFrame({
|
297 |
+
'metric': ['total_genes', 'highly_variable_genes', 'selection_fraction'],
|
298 |
+
'value': [
|
299 |
+
adata.n_vars,
|
300 |
+
n_highly_var,
|
301 |
+
n_highly_var / adata.n_vars
|
302 |
+
]
|
303 |
+
})
|
304 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_feature_summary.csv"
|
305 |
+
feature_summary.to_csv(summary_path, index=False)
|
306 |
+
|
307 |
+
return {
|
308 |
+
"message": f"Selected {n_highly_var} highly variable genes from {adata.n_vars} total genes",
|
309 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
310 |
+
"artifacts": [
|
311 |
+
{
|
312 |
+
"description": "Highly variable genes plot",
|
313 |
+
"path": str(plot_path.resolve())
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"description": "Feature selected data",
|
317 |
+
"path": str(output_file.resolve())
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"description": "Feature selection summary",
|
321 |
+
"path": str(summary_path.resolve())
|
322 |
+
}
|
323 |
+
]
|
324 |
+
}
|
325 |
+
|
326 |
+
@clustering_mcp.tool
|
327 |
+
def reduce_dimensionality(
|
328 |
+
# Primary data inputs
|
329 |
+
data_path: Annotated[str, "Path to h5ad file with feature-selected data. Should be output from select_features tool."],
|
330 |
+
# Analysis parameters with tutorial defaults
|
331 |
+
n_comps: Annotated[int, "Number of principal components to compute"] = 50,
|
332 |
+
use_highly_variable: Annotated[bool, "Whether to use only highly variable genes"] = True,
|
333 |
+
n_pcs_plot: Annotated[int, "Number of PCs to show in variance plot"] = 50,
|
334 |
+
color_vars: Annotated[list, "Variables to color PCA plot by"] = ["sample", "pct_counts_mt"],
|
335 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
336 |
+
) -> dict:
|
337 |
+
"""
|
338 |
+
Perform principal component analysis for dimensionality reduction and visualization.
|
339 |
+
Input is feature-selected AnnData object and output is PCA embeddings and variance plots.
|
340 |
+
"""
|
341 |
+
# Validate exactly one input
|
342 |
+
if data_path is None:
|
343 |
+
raise ValueError("Path to h5ad file must be provided")
|
344 |
+
|
345 |
+
# Set output prefix
|
346 |
+
if out_prefix is None:
|
347 |
+
out_prefix = f"pca_{timestamp}"
|
348 |
+
|
349 |
+
# Load data
|
350 |
+
adata = ad.read_h5ad(data_path)
|
351 |
+
|
352 |
+
# Perform PCA
|
353 |
+
sc.tl.pca(adata, n_comps=n_comps, use_highly_variable=use_highly_variable)
|
354 |
+
|
355 |
+
# Plot PCA variance ratio
|
356 |
+
plt.figure(figsize=(10, 6))
|
357 |
+
sc.pl.pca_variance_ratio(adata, n_pcs=n_pcs_plot, log=True)
|
358 |
+
variance_path = OUTPUT_DIR / f"{out_prefix}_pca_variance.png"
|
359 |
+
plt.savefig(variance_path, dpi=300, bbox_inches='tight')
|
360 |
+
plt.close()
|
361 |
+
|
362 |
+
# Plot PCA colored by specified variables
|
363 |
+
available_vars = [var for var in color_vars if var in adata.obs.columns]
|
364 |
+
if available_vars:
|
365 |
+
# Create combinations for plotting
|
366 |
+
plot_colors = []
|
367 |
+
plot_dims = []
|
368 |
+
for var in available_vars[:2]: # Limit to 2 variables to match tutorial
|
369 |
+
plot_colors.extend([var, var])
|
370 |
+
plot_dims.extend([(0, 1), (2, 3)])
|
371 |
+
|
372 |
+
plt.figure(figsize=(12, 8))
|
373 |
+
sc.pl.pca(
|
374 |
+
adata,
|
375 |
+
color=plot_colors,
|
376 |
+
dimensions=plot_dims,
|
377 |
+
ncols=2,
|
378 |
+
size=2,
|
379 |
+
)
|
380 |
+
pca_path = OUTPUT_DIR / f"{out_prefix}_pca_colored.png"
|
381 |
+
plt.savefig(pca_path, dpi=300, bbox_inches='tight')
|
382 |
+
plt.close()
|
383 |
+
pca_artifacts = [{"description": "PCA colored by variables", "path": str(pca_path.resolve())}]
|
384 |
+
else:
|
385 |
+
pca_artifacts = []
|
386 |
+
|
387 |
+
# Save data with PCA
|
388 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_pca.h5ad"
|
389 |
+
adata.write_h5ad(output_file)
|
390 |
+
|
391 |
+
# Create PCA summary
|
392 |
+
pca_summary = pd.DataFrame({
|
393 |
+
'PC': [f'PC{i+1}' for i in range(min(10, n_comps))],
|
394 |
+
'variance_ratio': adata.uns['pca']['variance_ratio'][:min(10, n_comps)]
|
395 |
+
})
|
396 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_pca_summary.csv"
|
397 |
+
pca_summary.to_csv(summary_path, index=False)
|
398 |
+
|
399 |
+
artifacts = [
|
400 |
+
{
|
401 |
+
"description": "PCA variance plot",
|
402 |
+
"path": str(variance_path.resolve())
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"description": "PCA processed data",
|
406 |
+
"path": str(output_file.resolve())
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"description": "PCA summary",
|
410 |
+
"path": str(summary_path.resolve())
|
411 |
+
}
|
412 |
+
] + pca_artifacts
|
413 |
+
|
414 |
+
return {
|
415 |
+
"message": f"PCA completed with {n_comps} components explaining {adata.uns['pca']['variance_ratio'].sum():.2%} variance",
|
416 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
417 |
+
"artifacts": artifacts
|
418 |
+
}
|
419 |
+
|
420 |
+
@clustering_mcp.tool
|
421 |
+
def build_neighborhood_graph(
|
422 |
+
# Primary data inputs
|
423 |
+
data_path: Annotated[str, "Path to h5ad file with PCA data. Should be output from reduce_dimensionality tool."],
|
424 |
+
# Analysis parameters with tutorial defaults
|
425 |
+
n_neighbors: Annotated[int, "Number of neighbors for graph construction"] = 15,
|
426 |
+
n_pcs: Annotated[int, "Number of principal components to use"] = None,
|
427 |
+
color_by: Annotated[str, "Variable to color UMAP by"] = "sample",
|
428 |
+
point_size: Annotated[float, "Point size for UMAP plot"] = 2,
|
429 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
430 |
+
) -> dict:
|
431 |
+
"""
|
432 |
+
Build nearest neighbor graph from PCA space and compute UMAP embedding for visualization.
|
433 |
+
Input is PCA-processed AnnData object and output is neighbor graph, UMAP embedding, and visualization.
|
434 |
+
"""
|
435 |
+
# Validate exactly one input
|
436 |
+
if data_path is None:
|
437 |
+
raise ValueError("Path to h5ad file must be provided")
|
438 |
+
|
439 |
+
# Set output prefix
|
440 |
+
if out_prefix is None:
|
441 |
+
out_prefix = f"neighbors_{timestamp}"
|
442 |
+
|
443 |
+
# Load data
|
444 |
+
adata = ad.read_h5ad(data_path)
|
445 |
+
|
446 |
+
# Compute the neighborhood graph
|
447 |
+
sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=n_pcs)
|
448 |
+
|
449 |
+
# Compute UMAP
|
450 |
+
sc.tl.umap(adata)
|
451 |
+
|
452 |
+
# Plot UMAP
|
453 |
+
if color_by in adata.obs.columns:
|
454 |
+
plt.figure(figsize=(8, 6))
|
455 |
+
sc.pl.umap(adata, color=color_by, size=point_size)
|
456 |
+
umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
|
457 |
+
plt.savefig(umap_path, dpi=300, bbox_inches='tight')
|
458 |
+
plt.close()
|
459 |
+
else:
|
460 |
+
# Plot without coloring if variable doesn't exist
|
461 |
+
plt.figure(figsize=(8, 6))
|
462 |
+
sc.pl.umap(adata, size=point_size)
|
463 |
+
umap_path = OUTPUT_DIR / f"{out_prefix}_umap.png"
|
464 |
+
plt.savefig(umap_path, dpi=300, bbox_inches='tight')
|
465 |
+
plt.close()
|
466 |
+
|
467 |
+
# Save data with neighborhood graph and UMAP
|
468 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_neighbors.h5ad"
|
469 |
+
adata.write_h5ad(output_file)
|
470 |
+
|
471 |
+
# Create neighborhood summary
|
472 |
+
neighbor_summary = pd.DataFrame({
|
473 |
+
'metric': ['n_neighbors', 'n_pcs_used', 'umap_dimensions'],
|
474 |
+
'value': [n_neighbors, n_pcs, adata.obsm['X_umap'].shape[1]]
|
475 |
+
})
|
476 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_neighbor_summary.csv"
|
477 |
+
neighbor_summary.to_csv(summary_path, index=False)
|
478 |
+
|
479 |
+
return {
|
480 |
+
"message": f"Neighborhood graph and UMAP completed for {adata.n_obs} cells",
|
481 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
482 |
+
"artifacts": [
|
483 |
+
{
|
484 |
+
"description": "UMAP visualization",
|
485 |
+
"path": str(umap_path.resolve())
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"description": "Neighborhood graph data",
|
489 |
+
"path": str(output_file.resolve())
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"description": "Neighborhood summary",
|
493 |
+
"path": str(summary_path.resolve())
|
494 |
+
}
|
495 |
+
]
|
496 |
+
}
|
497 |
+
|
498 |
+
@clustering_mcp.tool
|
499 |
+
def cluster_cells(
|
500 |
+
# Primary data inputs
|
501 |
+
data_path: Annotated[str, "Path to h5ad file with neighborhood graph. Should be output from build_neighborhood_graph tool."],
|
502 |
+
# Analysis parameters with tutorial defaults
|
503 |
+
resolution: Annotated[float, "Resolution parameter for Leiden clustering"] = 0.5,
|
504 |
+
flavor: Annotated[Literal["igraph", "leidenalg"], "Leiden algorithm implementation"] = "igraph",
|
505 |
+
n_iterations: Annotated[int, "Number of iterations for clustering"] = 2,
|
506 |
+
cluster_key: Annotated[str, "Key name for storing clusters in adata.obs"] = "leiden",
|
507 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
508 |
+
) -> dict:
|
509 |
+
"""
|
510 |
+
Perform Leiden clustering on the neighborhood graph and visualize results.
|
511 |
+
Input is AnnData with neighborhood graph and output is clustered data with UMAP visualization.
|
512 |
+
"""
|
513 |
+
# Validate exactly one input
|
514 |
+
if data_path is None:
|
515 |
+
raise ValueError("Path to h5ad file must be provided")
|
516 |
+
|
517 |
+
# Set output prefix
|
518 |
+
if out_prefix is None:
|
519 |
+
out_prefix = f"clusters_{timestamp}"
|
520 |
+
|
521 |
+
# Load data
|
522 |
+
adata = ad.read_h5ad(data_path)
|
523 |
+
|
524 |
+
# Perform Leiden clustering
|
525 |
+
sc.tl.leiden(
|
526 |
+
adata,
|
527 |
+
resolution=resolution,
|
528 |
+
flavor=flavor,
|
529 |
+
n_iterations=n_iterations,
|
530 |
+
key_added=cluster_key
|
531 |
+
)
|
532 |
+
|
533 |
+
# Plot UMAP colored by clusters
|
534 |
+
plt.figure(figsize=(8, 6))
|
535 |
+
sc.pl.umap(adata, color=[cluster_key])
|
536 |
+
cluster_path = OUTPUT_DIR / f"{out_prefix}_clusters_umap.png"
|
537 |
+
plt.savefig(cluster_path, dpi=300, bbox_inches='tight')
|
538 |
+
plt.close()
|
539 |
+
|
540 |
+
# Save clustered data
|
541 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_clustered.h5ad"
|
542 |
+
adata.write_h5ad(output_file)
|
543 |
+
|
544 |
+
# Create clustering summary
|
545 |
+
n_clusters = len(adata.obs[cluster_key].unique())
|
546 |
+
cluster_counts = adata.obs[cluster_key].value_counts().sort_index()
|
547 |
+
|
548 |
+
cluster_summary = pd.DataFrame({
|
549 |
+
'cluster': cluster_counts.index,
|
550 |
+
'n_cells': cluster_counts.values,
|
551 |
+
'fraction': cluster_counts.values / adata.n_obs
|
552 |
+
})
|
553 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_cluster_summary.csv"
|
554 |
+
cluster_summary.to_csv(summary_path, index=False)
|
555 |
+
|
556 |
+
return {
|
557 |
+
"message": f"Leiden clustering identified {n_clusters} clusters at resolution {resolution}",
|
558 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
559 |
+
"artifacts": [
|
560 |
+
{
|
561 |
+
"description": "Clusters UMAP plot",
|
562 |
+
"path": str(cluster_path.resolve())
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"description": "Clustered data",
|
566 |
+
"path": str(output_file.resolve())
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"description": "Cluster summary",
|
570 |
+
"path": str(summary_path.resolve())
|
571 |
+
}
|
572 |
+
]
|
573 |
+
}
|
574 |
+
|
575 |
+
@clustering_mcp.tool
|
576 |
+
def annotate_cell_types(
|
577 |
+
# Primary data inputs
|
578 |
+
data_path: Annotated[str, "Path to h5ad file with clustered data. Should be output from cluster_cells tool."],
|
579 |
+
# Analysis parameters with tutorial defaults
|
580 |
+
resolutions: Annotated[list, "List of resolutions for multi-resolution clustering"] = [0.02, 0.5, 2.0],
|
581 |
+
groupby_key: Annotated[str, "Clustering key to use for marker analysis"] = "leiden_res_0.50",
|
582 |
+
method: Annotated[Literal["wilcoxon", "t-test", "logreg"], "Method for differential expression"] = "wilcoxon",
|
583 |
+
n_genes: Annotated[int, "Number of top genes to show in plots"] = 5,
|
584 |
+
marker_genes: Annotated[dict | None, "Dictionary of cell type marker genes"] = None,
|
585 |
+
out_prefix: Annotated[str | None, "Output file prefix"] = None,
|
586 |
+
) -> dict:
|
587 |
+
"""
|
588 |
+
Perform multi-resolution clustering, marker gene analysis, and differential expression for cell type annotation.
|
589 |
+
Input is clustered AnnData object and output is multi-resolution plots, marker analysis, and differential expression results.
|
590 |
+
"""
|
591 |
+
# Validate exactly one input
|
592 |
+
if data_path is None:
|
593 |
+
raise ValueError("Path to h5ad file must be provided")
|
594 |
+
|
595 |
+
# Set output prefix
|
596 |
+
if out_prefix is None:
|
597 |
+
out_prefix = f"annotation_{timestamp}"
|
598 |
+
|
599 |
+
# Load data
|
600 |
+
adata = ad.read_h5ad(data_path)
|
601 |
+
|
602 |
+
# Define default marker genes if not provided
|
603 |
+
if marker_genes is None:
|
604 |
+
marker_genes = {
|
605 |
+
"CD14+ Mono": ["FCN1", "CD14"],
|
606 |
+
"CD16+ Mono": ["TCF7L2", "FCGR3A", "LYN"],
|
607 |
+
"cDC2": ["CST3", "COTL1", "LYZ", "DMXL2", "CLEC10A", "FCER1A"],
|
608 |
+
"Erythroblast": ["MKI67", "HBA1", "HBB"],
|
609 |
+
"Proerythroblast": ["CDK6", "SYNGR1", "HBM", "GYPA"],
|
610 |
+
"NK": ["GNLY", "NKG7", "CD247", "FCER1G", "TYROBP", "KLRG1", "FCGR3A"],
|
611 |
+
"ILC": ["ID2", "PLCG2", "GNLY", "SYNE1"],
|
612 |
+
"Naive CD20+ B": ["MS4A1", "IL4R", "IGHD", "FCRL1", "IGHM"],
|
613 |
+
"B cells": ["MS4A1", "ITGB1", "COL4A4", "PRDM1", "IRF4", "PAX5", "BCL11A", "BLK", "IGHD", "IGHM"],
|
614 |
+
"Plasma cells": ["MZB1", "HSP90B1", "FNDC3B", "PRDM1", "IGKC", "JCHAIN"],
|
615 |
+
"Plasmablast": ["XBP1", "PRDM1", "PAX5"],
|
616 |
+
"CD4+ T": ["CD4", "IL7R", "TRBC2"],
|
617 |
+
"CD8+ T": ["CD8A", "CD8B", "GZMK", "GZMA", "CCL5", "GZMB", "GZMH", "GZMA"],
|
618 |
+
"T naive": ["LEF1", "CCR7", "TCF7"],
|
619 |
+
"pDC": ["GZMB", "IL3RA", "COBLL1", "TCF4"],
|
620 |
+
}
|
621 |
+
|
622 |
+
# Perform multi-resolution clustering
|
623 |
+
for res in resolutions:
|
624 |
+
sc.tl.leiden(
|
625 |
+
adata, key_added=f"leiden_res_{res:4.2f}", resolution=res, flavor="igraph"
|
626 |
+
)
|
627 |
+
|
628 |
+
# Plot multi-resolution clustering
|
629 |
+
cluster_keys = [f"leiden_res_{res:4.2f}" for res in resolutions]
|
630 |
+
plt.figure(figsize=(15, 5))
|
631 |
+
sc.pl.umap(
|
632 |
+
adata,
|
633 |
+
color=cluster_keys,
|
634 |
+
legend_loc="on data",
|
635 |
+
)
|
636 |
+
multiresolution_path = OUTPUT_DIR / f"{out_prefix}_multiresolution_clusters.png"
|
637 |
+
plt.savefig(multiresolution_path, dpi=300, bbox_inches='tight')
|
638 |
+
plt.close()
|
639 |
+
|
640 |
+
# Check if groupby_key exists, if not use first resolution
|
641 |
+
if groupby_key not in adata.obs.columns:
|
642 |
+
groupby_key = cluster_keys[1] if len(cluster_keys) > 1 else cluster_keys[0]
|
643 |
+
|
644 |
+
# Plot marker genes
|
645 |
+
# Filter marker genes to only include those present in the data
|
646 |
+
available_markers = {}
|
647 |
+
for cell_type, genes in marker_genes.items():
|
648 |
+
available_genes = [g for g in genes if g in adata.var_names]
|
649 |
+
if available_genes:
|
650 |
+
available_markers[cell_type] = available_genes
|
651 |
+
|
652 |
+
if available_markers:
|
653 |
+
plt.figure(figsize=(12, 8))
|
654 |
+
sc.pl.dotplot(adata, available_markers, groupby=groupby_key, standard_scale="var")
|
655 |
+
marker_path = OUTPUT_DIR / f"{out_prefix}_marker_genes.png"
|
656 |
+
plt.savefig(marker_path, dpi=300, bbox_inches='tight')
|
657 |
+
plt.close()
|
658 |
+
marker_artifacts = [{"description": "Marker genes dotplot", "path": str(marker_path.resolve())}]
|
659 |
+
else:
|
660 |
+
marker_artifacts = []
|
661 |
+
|
662 |
+
# Differential expression analysis
|
663 |
+
sc.tl.rank_genes_groups(adata, groupby=groupby_key, method=method)
|
664 |
+
|
665 |
+
# Plot top differentially expressed genes
|
666 |
+
plt.figure(figsize=(10, 8))
|
667 |
+
sc.pl.rank_genes_groups_dotplot(
|
668 |
+
adata, groupby=groupby_key, standard_scale="var", n_genes=n_genes
|
669 |
+
)
|
670 |
+
de_path = OUTPUT_DIR / f"{out_prefix}_differential_expression.png"
|
671 |
+
plt.savefig(de_path, dpi=300, bbox_inches='tight')
|
672 |
+
plt.close()
|
673 |
+
|
674 |
+
# Create manual cell type annotations for coarse resolution
|
675 |
+
coarse_key = f"leiden_res_{resolutions[0]:4.2f}"
|
676 |
+
if coarse_key in adata.obs.columns:
|
677 |
+
adata.obs["cell_type_lvl1"] = adata.obs[coarse_key].map({
|
678 |
+
"0": "Lymphocytes",
|
679 |
+
"1": "Monocytes",
|
680 |
+
"2": "Erythroid",
|
681 |
+
"3": "B Cells",
|
682 |
+
})
|
683 |
+
|
684 |
+
# Save annotated data
|
685 |
+
output_file = OUTPUT_DIR / f"{out_prefix}_annotated.h5ad"
|
686 |
+
adata.write_h5ad(output_file)
|
687 |
+
|
688 |
+
# Export differential expression results
|
689 |
+
de_results = []
|
690 |
+
for cluster in adata.obs[groupby_key].unique():
|
691 |
+
cluster_genes = sc.get.rank_genes_groups_df(adata, group=cluster).head(n_genes)
|
692 |
+
cluster_genes['cluster'] = cluster
|
693 |
+
de_results.append(cluster_genes)
|
694 |
+
|
695 |
+
if de_results:
|
696 |
+
de_df = pd.concat(de_results, ignore_index=True)
|
697 |
+
de_path_csv = OUTPUT_DIR / f"{out_prefix}_differential_genes.csv"
|
698 |
+
de_df.to_csv(de_path_csv, index=False)
|
699 |
+
de_artifacts = [{"description": "Differential expression genes", "path": str(de_path_csv.resolve())}]
|
700 |
+
else:
|
701 |
+
de_artifacts = []
|
702 |
+
|
703 |
+
# Create annotation summary
|
704 |
+
annotation_summary = pd.DataFrame({
|
705 |
+
'resolution': resolutions,
|
706 |
+
'n_clusters': [len(adata.obs[f"leiden_res_{res:4.2f}"].unique()) for res in resolutions]
|
707 |
+
})
|
708 |
+
summary_path = OUTPUT_DIR / f"{out_prefix}_annotation_summary.csv"
|
709 |
+
annotation_summary.to_csv(summary_path, index=False)
|
710 |
+
|
711 |
+
artifacts = [
|
712 |
+
{
|
713 |
+
"description": "Multi-resolution clustering",
|
714 |
+
"path": str(multiresolution_path.resolve())
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"description": "Differential expression plot",
|
718 |
+
"path": str(de_path.resolve())
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"description": "Annotated data",
|
722 |
+
"path": str(output_file.resolve())
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"description": "Annotation summary",
|
726 |
+
"path": str(summary_path.resolve())
|
727 |
+
}
|
728 |
+
] + marker_artifacts + de_artifacts
|
729 |
+
|
730 |
+
return {
|
731 |
+
"message": f"Cell type annotation completed with {len(resolutions)} resolutions and marker analysis",
|
732 |
+
"reference": "https://github.com/scverse/scanpy/tree/main/docs/tutorials/basics/clustering.ipynb",
|
733 |
+
"artifacts": artifacts
|
734 |
+
}
|
735 |
+
|
736 |
+
|
737 |
+
@clustering_mcp.prompt
|
738 |
+
def preprocess_and_cluster_scanpy(data_path: str) -> str:
|
739 |
+
"""
|
740 |
+
Complete preprocessing and clustering pipeline for single-cell RNA sequencing data analysis.
|
741 |
+
|
742 |
+
This comprehensive workflow performs all essential steps for analyzing scRNA-seq data from raw counts
|
743 |
+
to cell type annotation, following the standard Scanpy tutorial for single-cell analysis.
|
744 |
+
"""
|
745 |
+
return f"""
|
746 |
+
Execute a complete single-cell RNA-seq preprocessing and clustering pipeline on {data_path}.
|
747 |
+
|
748 |
+
First inspect the data to understand:
|
749 |
+
- Dataset size and complexity
|
750 |
+
- Organism (human/mouse) from gene names
|
751 |
+
- Batch information in adata.obs (e.g., "sample", "batch", "donor", "experiment", "condition")
|
752 |
+
- Data quality distribution
|
753 |
+
|
754 |
+
IMPORTANT: Adapt parameters intelligently based on data characteristics.
|
755 |
+
Stick to the defaults if there is no strong reason (e.g. unchanged leads to false results) to change.
|
756 |
+
|
757 |
+
Then run the pipeline sequentially, making smart parameter choices:
|
758 |
+
|
759 |
+
1. **quality_control** - Examine data and adapt:
|
760 |
+
- data_path="{data_path}"
|
761 |
+
- batch_key: Set if batch columns exist (for batch-aware doublet detection)
|
762 |
+
- mt_prefix: "MT-" (human) or "Mt-" (mouse) based on gene names
|
763 |
+
- min_genes/min_cells: Adjust based on quality distributions
|
764 |
+
- Review QC plots before proceeding
|
765 |
+
|
766 |
+
2. **normalize_data** - Use QC output:
|
767 |
+
- target_sum: None (median) or 10000 (CP10K)
|
768 |
+
|
769 |
+
3. **select_features** - Feature selection:
|
770 |
+
- batch_key: Use same as step 1 if batches present
|
771 |
+
- n_top_genes: 2000-3000 based on complexity
|
772 |
+
- flavor: "seurat" or "seurat_v3" for high dropout
|
773 |
+
|
774 |
+
4. **reduce_dimensionality** - PCA analysis:
|
775 |
+
- n_comps: 50 (or less for small datasets)
|
776 |
+
- Review variance plot for optimal PC selection
|
777 |
+
- color_vars: Include relevant metadata
|
778 |
+
|
779 |
+
5. **build_neighborhood_graph** - Graph construction:
|
780 |
+
- n_pcs: Based on elbow in variance plot (20-40)
|
781 |
+
- n_neighbors: 10-30 based on dataset size
|
782 |
+
- Check UMAP for batch effects
|
783 |
+
|
784 |
+
6. **cluster_cells** - Clustering:
|
785 |
+
- resolution: 0.1-0.4 (broad) or 0.6-1.5 (fine)
|
786 |
+
- Based on expected cell type diversity
|
787 |
+
|
788 |
+
7. **annotate_cell_types** - Annotation:
|
789 |
+
- resolutions: Test multiple [low, medium, high]
|
790 |
+
- marker_genes: Provide tissue-specific markers if known
|
791 |
+
- Validate with marker expression
|
792 |
+
|
793 |
+
KEY DECISIONS:
|
794 |
+
- Identify and consistently use batch_key throughout if batches exist
|
795 |
+
- Adjust all thresholds based on data quality
|
796 |
+
- Validate each step before proceeding
|
797 |
+
- Document any anomalies or batch effects
|
798 |
+
|
799 |
+
The pipeline produces a fully annotated dataset with QC metrics, embeddings, clusters, and cell type markers.
|
800 |
+
"""
|