Spaces:
Running
Running
File size: 7,557 Bytes
038f313 fab24df c5a20a4 038f313 c6bdd15 880ced6 c6bdd15 038f313 c6bdd15 038f313 c58c098 038f313 27c8b8d 038f313 3a64d68 98674ca c5a20a4 038f313 878aff7 c6bdd15 f7c4208 901bafe 52ad57a 038f313 c5a20a4 c6bdd15 901bafe 27c8b8d a05c183 27c8b8d 30153c5 c6bdd15 27c8b8d 30153c5 c6bdd15 27c8b8d 901bafe 27c8b8d c6bdd15 27c8b8d 901bafe c5a20a4 c6bdd15 901bafe a8fc89d c6bdd15 27c8b8d 30153c5 27c8b8d c6bdd15 a8fc89d 542c2ac c6bdd15 901bafe b0cbd1c f7c4208 c6bdd15 a8fc89d b0cbd1c 901bafe 817474e 901bafe a05c183 878aff7 901bafe a8fc89d b0cbd1c c6bdd15 b0cbd1c a8fc89d 30153c5 a8fc89d 30153c5 817474e a8fc89d 30153c5 901bafe c6bdd15 901bafe a8fc89d a05c183 817474e c6bdd15 b0cbd1c c6bdd15 a8fc89d 30153c5 a8fc89d c6bdd15 a8fc89d b0cbd1c c6bdd15 b0cbd1c c6bdd15 b0cbd1c a8fc89d 30153c5 a8fc89d c6bdd15 a8fc89d 30153c5 a8fc89d c6bdd15 a8fc89d c6bdd15 769901b 77298b9 c6bdd15 391cae3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
from openai import OpenAI
import os
# A helper function to show pop-up (toast) messages in the Gradio interface
# and also keep them in the console for debugging.
# Note: gr.toast() only works during or after a Gradio event has started.
# If this code runs at the global level (on import), the pop-ups may
# not appear. They *will* appear for any messages triggered during
# a Gradio event (e.g. when the user sends a message).
def show_loading_status(msg):
# Attempt to show pop-up via gr.toast (works when called inside a running Gradio event).
try:
gr.toast(msg)
except:
# If gr.toast() fails (e.g. called outside of an event), just ignore or pass
pass
# Also print to console for debugging
print(msg)
ACCESS_TOKEN = os.getenv("HF_TOKEN")
show_loading_status("Access token loaded.")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
show_loading_status("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
show_loading_status(f"Received message: {message}")
show_loading_status(f"History: {history}")
show_loading_status(f"System message: {system_message}")
show_loading_status(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
show_loading_status(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
show_loading_status(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
messages = [{"role": "system", "content": system_message}]
show_loading_status("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
show_loading_status(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
show_loading_status(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
show_loading_status("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
show_loading_status(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
show_loading_status("Sending request to OpenAI API.")
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
show_loading_status(f"Received token: {token_text}")
response += token_text
yield response
show_loading_status("Completed response generation.")
# GRADIO UI
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
show_loading_status("Chatbot interface created.")
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max new tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
def set_custom_model_from_radio(selected):
show_loading_status(f"Featured model selected: {selected}")
return selected
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box,
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
show_loading_status("ChatInterface object created.")
with demo:
with gr.Accordion("Model Selection", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
show_loading_status("Model search box created.")
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
show_loading_status("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
show_loading_status("Featured models radio button created.")
def filter_models(search_term):
show_loading_status(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
show_loading_status(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
show_loading_status("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
show_loading_status("Featured model radio button change event linked.")
show_loading_status("Gradio interface initialized.")
if __name__ == "__main__":
show_loading_status("Launching the demo application.")
demo.launch() |