File size: 8,742 Bytes
038f313
fab24df
c5a20a4
038f313
880ced6
 
e13eb1b
038f313
a8fc89d
038f313
 
 
 
e13eb1b
038f313
30153c5
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
c5a20a4
038f313
e13eb1b
901bafe
 
 
 
 
 
 
 
 
 
e13eb1b
901bafe
27c8b8d
 
 
 
 
be3f346
f7c4208
901bafe
52ad57a
 
038f313
901bafe
c5a20a4
901bafe
 
 
27c8b8d
901bafe
 
27c8b8d
30153c5
901bafe
27c8b8d
30153c5
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
27c8b8d
901bafe
c5a20a4
901bafe
 
 
a8fc89d
901bafe
27c8b8d
901bafe
27c8b8d
30153c5
 
 
 
 
 
 
 
27c8b8d
901bafe
27c8b8d
901bafe
a8fc89d
 
542c2ac
901bafe
 
f7c4208
a8fc89d
 
 
be3f346
901bafe
 
 
a8fc89d
901bafe
30153c5
901bafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
 
 
901bafe
 
a8fc89d
30153c5
a8fc89d
 
901bafe
 
 
 
a8fc89d
30153c5
a8fc89d
30153c5
 
 
 
 
 
901bafe
a8fc89d
30153c5
 
 
a8fc89d
 
 
901bafe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
30153c5
a8fc89d
30153c5
 
 
a8fc89d
901bafe
a8fc89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
901bafe
a8fc89d
 
30153c5
 
 
 
a8fc89d
901bafe
a8fc89d
 
901bafe
30153c5
901bafe
a8fc89d
 
 
30153c5
 
 
a8fc89d
901bafe
a8fc89d
 
30153c5
 
 
a8fc89d
901bafe
a8fc89d
be3f346
769901b
77298b9
27c8b8d
77298b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model
):
    """
    This function handles the chatbot response. It takes in:
    - message: the user's new message
    - history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
    - system_message: the system prompt
    - max_tokens: the maximum number of tokens to generate in the response
    - temperature: sampling temperature
    - top_p: top-p (nucleus) sampling
    - frequency_penalty: penalize repeated tokens in the output
    - seed: a fixed seed for reproducibility; -1 will mean 'random'
    - custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
    """

    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Construct the messages array required by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]  # Extract user message from the tuple
        assistant_part = val[1]  # Extract assistant message from the tuple
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # If user provided a model, use that; otherwise, fall back to a default model
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print("Sending request to OpenAI API.")

    # Make the streaming request to the HF Inference API via openai-like client
    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        # Extract the token text from the response chunk
        token_text = message_chunk.choices[0].delta.content
        print(f"Received token: {token_text}")
        response += token_text
        yield response

    print("Completed response generation.")


# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------

# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel")
print("Chatbot interface created.")

# Create textboxes and sliders for system prompt, tokens, and other parameters
system_message_box = gr.Textbox(value="", label="System message")

max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max new tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model."
)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

# IMPORTANT: Because we have 1 main user input + 7 additional inputs,
# each example should be an 8-item list [user_text, system_prompt, max_tokens, temperature,
# top_p, frequency_penalty, seed, custom_model].
# You can adjust the default parameter values if desired.
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,
    ],
    fill_height=True,
    chatbot=chatbot,
    theme="Nymbo/Nymbo_Theme",
)
print("ChatInterface object created.")

# Add examples to the interface
demo.add_examples(
    examples=[
        ["Howdy, partner!", "You are a friendly assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
        ["What's your model name and who trained you?", "You are a factual assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
        ["How many R's are there in 'Strawberry'?", "You are a playful assistant.", 512, 0.7, 0.95, 0.0, -1, ""],
    ],
    inputs=[
        chatbot,
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box,
    ],
)
print("Examples added to the interface.")

with demo:
    with gr.Accordion("Featured Models", open=False):
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        print("Model search box created.")

        models_list = [
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "google/gemma-2-27b-it",
            "google/gemma-2-9b-it",
            "google/gemma-2-2b-it",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/QwQ-32B-Preview",
            "PowerInfer/SmallThinker-3B-Preview",
            "HuggingFaceTB/SmolLM2-1.7B-Instruct",
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
            "microsoft/Phi-3.5-mini-instruct",
        ]
        print("Models list initialized.")

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )
        print("Featured models radio button created.")

        def filter_models(search_term):
            print(f"Filtering models with search term: {search_term}")
            filtered = [m for m in models_list if search_term.lower() in m.lower()]
            print(f"Filtered models: {filtered}")
            return gr.update(choices=filtered)

        model_search_box.change(
            fn=filter_models,
            inputs=model_search_box,
            outputs=featured_model_radio
        )
        print("Model search box change event linked.")

        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )
        print("Featured model radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()