File size: 9,157 Bytes
c1e62b8 76d42da c1e62b8 76d42da c1e62b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
#!/usr/bin/env python
import gradio as gr
import os
import json
import requests
import time
from concurrent.futures import ThreadPoolExecutor
from utils import is_chinese, process_image_without_resize, parse_response, templates_agent_cogagent, template_grounding_cogvlm, postprocess_text
DESCRIPTION = '''<h2 style='text-align: center'> <a href="https://github.com/THUDM/CogVLM"> CogVLM & CogAgent Chat Demo</a> </h2>'''
NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.\n\n该demo仅作为测试使用,不支持批量请求。如有大批量需求,欢迎联系[智谱AI](mailto:[email protected])。\n\n请注意该Demo目前仅支持英文,<a href="http://36.103.203.44:7861/">备用网页</a>支持中文。'
MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.<br>Hint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
GROUNDING_NOTICE = 'Hint: When you check "Grounding", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L344">corresponding prompt</a> or the examples below.'
AGENT_NOTICE = 'Hint: When you check "CogAgent", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L761C1-L761C17">corresponding prompt</a> or the examples below.'
default_chatbox = [("", "Hi, What do you want to know about this image?")]
URL = os.environ.get("URL")
def make_request(URL, headers, data):
response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100))
return response.json()
def post(
input_text,
temperature,
top_p,
top_k,
image_prompt,
result_previous,
hidden_image,
grounding,
cogagent,
grounding_template,
agent_template
):
result_text = [(ele[0], ele[1]) for ele in result_previous]
for i in range(len(result_text)-1, -1, -1):
if result_text[i][0] == "" or result_text[i][0] == None:
del result_text[i]
print(f"history {result_text}")
is_zh = is_chinese(input_text)
if image_prompt is None:
print("Image empty")
if is_zh:
result_text.append((input_text, '图片为空!请上传图片并重试。'))
else:
result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
return input_text, result_text, hidden_image
elif input_text == "":
print("Text empty")
result_text.append((input_text, 'Text empty! Please enter text and retry.'))
return "", result_text, hidden_image
headers = {
"Content-Type": "application/json; charset=UTF-8",
"User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
}
if image_prompt:
pil_img, encoded_img, image_hash, image_path_grounding = process_image_without_resize(image_prompt)
print(f"image_hash:{image_hash}, hidden_image_hash:{hidden_image}")
if hidden_image is not None and image_hash != hidden_image:
print("image has been update")
result_text = []
hidden_image = image_hash
else:
encoded_img = None
model_use = "vlm_chat"
if not cogagent and grounding:
model_use = "vlm_grounding"
if grounding_template:
input_text = postprocess_text(grounding_template, input_text)
elif cogagent:
model_use = "agent_chat"
if agent_template is not None and agent_template != "do not use template":
input_text = postprocess_text(agent_template, input_text)
prompt = input_text
if grounding:
prompt += "(with grounding)"
print(f'request {model_use} model... with prompt {prompt}, grounding_template {grounding_template}, agent_template {agent_template}')
data = json.dumps({
'model_use': model_use,
'is_grounding': grounding,
'text': prompt,
'history': result_text,
'image': encoded_img,
'temperature': temperature,
'top_p': top_p,
'top_k': top_k,
'do_sample': True,
'max_new_tokens': 2048
})
try:
with ThreadPoolExecutor(max_workers=1) as executor:
future = executor.submit(make_request, URL, headers, data)
# time.sleep(15)
response = future.result() # Blocks until the request is complete
# response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
except Exception as e:
print("error message", e)
if is_zh:
result_text.append((input_text, '超时!请稍等几分钟再重试。'))
else:
result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
return "", result_text, hidden_image
print('request done...')
# response = {'result':input_text}
answer = str(response['result'])
if grounding:
parse_response(pil_img, answer, image_path_grounding)
new_answer = answer.replace(input_text, "")
result_text.append((input_text, new_answer))
result_text.append((None, (image_path_grounding,)))
else:
result_text.append((input_text, answer))
print(result_text)
print('finished')
return "", result_text, hidden_image
def clear_fn(value):
return "", default_chatbox, None
def clear_fn2(value):
return default_chatbox
def main():
gr.close_all()
examples = []
with open("./examples/example_inputs.jsonl") as f:
for line in f:
data = json.loads(line)
examples.append(data)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(NOTES)
with gr.Row():
with gr.Column(scale=4.5):
with gr.Group():
input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
with gr.Row():
run_button = gr.Button('Generate')
clear_button = gr.Button('Clear')
image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
with gr.Row():
grounding = gr.Checkbox(label="Grounding")
cogagent = gr.Checkbox(label="CogAgent")
with gr.Row():
# grounding_notice = gr.Markdown(GROUNDING_NOTICE)
grounding_template = gr.Dropdown(choices=template_grounding_cogvlm, label="Grounding Template", value=template_grounding_cogvlm[0])
# agent_notice = gr.Markdown(AGENT_NOTICE)
agent_template = gr.Dropdown(choices=templates_agent_cogagent, label="Agent Template", value=templates_agent_cogagent[0])
with gr.Row():
temperature = gr.Slider(maximum=1, value=0.9, minimum=0, label='Temperature')
top_p = gr.Slider(maximum=1, value=0.8, minimum=0, label='Top P')
top_k = gr.Slider(maximum=50, value=5, minimum=1, step=1, label='Top K')
with gr.Column(scale=5.5):
result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")], height=550)
hidden_image_hash = gr.Textbox(visible=False)
gr_examples = gr.Examples(examples=[[example["text"], example["image"], example["grounding"], example["cogagent"]] for example in examples],
inputs=[input_text, image_prompt, grounding, cogagent],
label="Example Inputs (Click to insert an examplet into the input box)",
examples_per_page=6)
gr.Markdown(MAINTENANCE_NOTICE1)
print(gr.__version__)
run_button.click(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
outputs=[input_text, result_text, hidden_image_hash])
input_text.submit(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
outputs=[input_text, result_text, hidden_image_hash])
clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
print(gr.__version__)
demo.queue(concurrency_count=10)
demo.launch()
if __name__ == '__main__':
main() |