Nishgop commited on
Commit
c1e62b8
·
verified ·
1 Parent(s): 76d42da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +204 -73
app.py CHANGED
@@ -1,75 +1,206 @@
 
 
1
  import gradio as gr
2
- import torch
3
  import json
4
- from io import BytesIO
5
- from PIL import Image, ImageOps
6
- from IPython.display import display, Markdown
7
- from transformers import AutoModelForCausalLM, LlamaTokenizer
8
- from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
9
-
10
- # Initialize tokenizer and model
11
- tokenizer = LlamaTokenizer.from_pretrained('lmsys/vicuna-7b-v1.5')
12
- # tokenizer = LlamaTokenizer.from_pretrained('vicuna-7b-v1.5')
13
- model = AutoModelForCausalLM.from_pretrained(
14
- 'THUDM/cogvlm-chat-hf',
15
- load_in_4bit=True,
16
- trust_remote_code=True,
17
- device_map="auto"
18
- ).eval()
19
-
20
- def generate_description(image, query, top_p, top_k, output_length, temperature):
21
- # Use the uploaded image (PIL format)
22
- display_size = (224, 224)
23
- image = image.resize(display_size, Image.LANCZOS)
24
-
25
- # Build the conversation input
26
- inputs = model.build_conversation_input_ids(tokenizer, query=query, history=[], images=[image])
27
-
28
- # Prepare the inputs dictionary for model.generate()
29
- inputs = {
30
- 'input_ids': inputs['input_ids'].unsqueeze(0).to('cuda'),
31
- 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to('cuda'),
32
- 'attention_mask': inputs['attention_mask'].unsqueeze(0).to('cuda'),
33
- 'images': [[inputs['images'][0].to('cuda').to(torch.float16)]],
34
- }
35
-
36
- # Set the generation kwargs with user-defined values
37
- gen_kwargs = {
38
- "max_length": output_length,
39
- "do_sample": True, # Enable sampling to use top_p, top_k, and temperature
40
- "top_p": top_p,
41
- "top_k": top_k,
42
- "temperature": temperature
43
- }
44
-
45
- # Generate the description
46
- with torch.no_grad():
47
- outputs = model.generate(**inputs, **gen_kwargs)
48
- description = tokenizer.decode(outputs[0], skip_special_tokens=True)
49
-
50
- return description
51
-
52
- with gr.Blocks() as app:
53
- gr.Markdown("# Visual Product DNA - Image to Attribute Extractor")
54
-
55
- with gr.Row():
56
- with gr.Column():
57
- image_input = gr.Image(label="Upload Image", type="pil", height=500)
58
- gr.skip
59
- query_input = gr.Textbox(label="Enter your prompt", value="Capture all attributes as JSON", lines=4)
60
-
61
- with gr.Column():
62
- top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.1, label="Creativity (top_p)")
63
- top_k_slider = gr.Slider(minimum=0, maximum=100, step=1, value=100, label="Coherence (top_k)")
64
- output_length_slider = gr.Slider(minimum=1, maximum=4096, step=1, value=2048, label="Output Length")
65
- temperature_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.01, value=0.1, label="Temperature")
66
- submit_button = gr.Button("Extract Attributes")
67
- description_output = gr.Textbox(label="Generated JSON", lines=12)
68
-
69
- submit_button.click(
70
- fn=generate_description,
71
- inputs=[image_input, query_input, top_p_slider, top_k_slider, output_length_slider, temperature_slider],
72
- outputs=description_output
73
- )
74
-
75
- app.launch(share=True, input = False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
  import gradio as gr
4
+ import os
5
  import json
6
+ import requests
7
+ import time
8
+ from concurrent.futures import ThreadPoolExecutor
9
+ from utils import is_chinese, process_image_without_resize, parse_response, templates_agent_cogagent, template_grounding_cogvlm, postprocess_text
10
+
11
+ DESCRIPTION = '''<h2 style='text-align: center'> <a href="https://github.com/THUDM/CogVLM"> CogVLM & CogAgent Chat Demo</a> </h2>'''
12
+
13
+ NOTES = 'This app is adapted from <a href="https://github.com/THUDM/CogVLM">https://github.com/THUDM/CogVLM</a>. It would be recommended to check out the repo if you want to see the detail of our model.\n\n该demo仅作为测试使用,不支持批量请求。如有大批量需求,欢迎联系[智谱AI](mailto:[email protected])。\n\n请注意该Demo目前仅支持英文,<a href="http://36.103.203.44:7861/">备用网页</a>支持中文。'
14
+
15
+ MAINTENANCE_NOTICE1 = 'Hint 1: If the app report "Something went wrong, connection error out", please turn off your proxy and retry.<br>Hint 2: If you upload a large size of image like 10MB, it may take some time to upload and process. Please be patient and wait.'
16
+
17
+ GROUNDING_NOTICE = 'Hint: When you check "Grounding", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L344">corresponding prompt</a> or the examples below.'
18
+
19
+ AGENT_NOTICE = 'Hint: When you check "CogAgent", please use the <a href="https://github.com/THUDM/CogVLM/blob/main/utils/utils/template.py#L761C1-L761C17">corresponding prompt</a> or the examples below.'
20
+
21
+
22
+ default_chatbox = [("", "Hi, What do you want to know about this image?")]
23
+
24
+ URL = os.environ.get("URL")
25
+
26
+
27
+ def make_request(URL, headers, data):
28
+ response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100))
29
+ return response.json()
30
+
31
+ def post(
32
+ input_text,
33
+ temperature,
34
+ top_p,
35
+ top_k,
36
+ image_prompt,
37
+ result_previous,
38
+ hidden_image,
39
+ grounding,
40
+ cogagent,
41
+ grounding_template,
42
+ agent_template
43
+ ):
44
+ result_text = [(ele[0], ele[1]) for ele in result_previous]
45
+ for i in range(len(result_text)-1, -1, -1):
46
+ if result_text[i][0] == "" or result_text[i][0] == None:
47
+ del result_text[i]
48
+ print(f"history {result_text}")
49
+
50
+ is_zh = is_chinese(input_text)
51
+
52
+ if image_prompt is None:
53
+ print("Image empty")
54
+ if is_zh:
55
+ result_text.append((input_text, '图片为空!请上传图片并重试。'))
56
+ else:
57
+ result_text.append((input_text, 'Image empty! Please upload a image and retry.'))
58
+ return input_text, result_text, hidden_image
59
+ elif input_text == "":
60
+ print("Text empty")
61
+ result_text.append((input_text, 'Text empty! Please enter text and retry.'))
62
+ return "", result_text, hidden_image
63
+
64
+ headers = {
65
+ "Content-Type": "application/json; charset=UTF-8",
66
+ "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.87 Safari/537.36",
67
+ }
68
+ if image_prompt:
69
+ pil_img, encoded_img, image_hash, image_path_grounding = process_image_without_resize(image_prompt)
70
+ print(f"image_hash:{image_hash}, hidden_image_hash:{hidden_image}")
71
+
72
+ if hidden_image is not None and image_hash != hidden_image:
73
+ print("image has been update")
74
+ result_text = []
75
+ hidden_image = image_hash
76
+ else:
77
+ encoded_img = None
78
+
79
+ model_use = "vlm_chat"
80
+ if not cogagent and grounding:
81
+ model_use = "vlm_grounding"
82
+ if grounding_template:
83
+ input_text = postprocess_text(grounding_template, input_text)
84
+ elif cogagent:
85
+ model_use = "agent_chat"
86
+ if agent_template is not None and agent_template != "do not use template":
87
+ input_text = postprocess_text(agent_template, input_text)
88
+
89
+ prompt = input_text
90
+
91
+ if grounding:
92
+ prompt += "(with grounding)"
93
+
94
+ print(f'request {model_use} model... with prompt {prompt}, grounding_template {grounding_template}, agent_template {agent_template}')
95
+ data = json.dumps({
96
+ 'model_use': model_use,
97
+ 'is_grounding': grounding,
98
+ 'text': prompt,
99
+ 'history': result_text,
100
+ 'image': encoded_img,
101
+ 'temperature': temperature,
102
+ 'top_p': top_p,
103
+ 'top_k': top_k,
104
+ 'do_sample': True,
105
+ 'max_new_tokens': 2048
106
+ })
107
+ try:
108
+ with ThreadPoolExecutor(max_workers=1) as executor:
109
+ future = executor.submit(make_request, URL, headers, data)
110
+ # time.sleep(15)
111
+ response = future.result() # Blocks until the request is complete
112
+ # response = requests.request("POST", URL, headers=headers, data=data, timeout=(60, 100)).json()
113
+ except Exception as e:
114
+ print("error message", e)
115
+ if is_zh:
116
+ result_text.append((input_text, '超时!请稍等几分钟再重试。'))
117
+ else:
118
+ result_text.append((input_text, 'Timeout! Please wait a few minutes and retry.'))
119
+ return "", result_text, hidden_image
120
+ print('request done...')
121
+ # response = {'result':input_text}
122
+
123
+ answer = str(response['result'])
124
+ if grounding:
125
+ parse_response(pil_img, answer, image_path_grounding)
126
+ new_answer = answer.replace(input_text, "")
127
+ result_text.append((input_text, new_answer))
128
+ result_text.append((None, (image_path_grounding,)))
129
+ else:
130
+ result_text.append((input_text, answer))
131
+ print(result_text)
132
+ print('finished')
133
+ return "", result_text, hidden_image
134
+
135
+
136
+ def clear_fn(value):
137
+ return "", default_chatbox, None
138
+
139
+ def clear_fn2(value):
140
+ return default_chatbox
141
+
142
+
143
+ def main():
144
+ gr.close_all()
145
+ examples = []
146
+ with open("./examples/example_inputs.jsonl") as f:
147
+ for line in f:
148
+ data = json.loads(line)
149
+ examples.append(data)
150
+
151
+
152
+ with gr.Blocks(css='style.css') as demo:
153
+
154
+ gr.Markdown(DESCRIPTION)
155
+ gr.Markdown(NOTES)
156
+
157
+ with gr.Row():
158
+ with gr.Column(scale=4.5):
159
+ with gr.Group():
160
+ input_text = gr.Textbox(label='Input Text', placeholder='Please enter text prompt below and press ENTER.')
161
+ with gr.Row():
162
+ run_button = gr.Button('Generate')
163
+ clear_button = gr.Button('Clear')
164
+
165
+ image_prompt = gr.Image(type="filepath", label="Image Prompt", value=None)
166
+ with gr.Row():
167
+ grounding = gr.Checkbox(label="Grounding")
168
+ cogagent = gr.Checkbox(label="CogAgent")
169
+ with gr.Row():
170
+ # grounding_notice = gr.Markdown(GROUNDING_NOTICE)
171
+ grounding_template = gr.Dropdown(choices=template_grounding_cogvlm, label="Grounding Template", value=template_grounding_cogvlm[0])
172
+ # agent_notice = gr.Markdown(AGENT_NOTICE)
173
+ agent_template = gr.Dropdown(choices=templates_agent_cogagent, label="Agent Template", value=templates_agent_cogagent[0])
174
+
175
+ with gr.Row():
176
+ temperature = gr.Slider(maximum=1, value=0.9, minimum=0, label='Temperature')
177
+ top_p = gr.Slider(maximum=1, value=0.8, minimum=0, label='Top P')
178
+ top_k = gr.Slider(maximum=50, value=5, minimum=1, step=1, label='Top K')
179
+
180
+ with gr.Column(scale=5.5):
181
+ result_text = gr.components.Chatbot(label='Multi-round conversation History', value=[("", "Hi, What do you want to know about this image?")], height=550)
182
+ hidden_image_hash = gr.Textbox(visible=False)
183
+
184
+ gr_examples = gr.Examples(examples=[[example["text"], example["image"], example["grounding"], example["cogagent"]] for example in examples],
185
+ inputs=[input_text, image_prompt, grounding, cogagent],
186
+ label="Example Inputs (Click to insert an examplet into the input box)",
187
+ examples_per_page=6)
188
+
189
+ gr.Markdown(MAINTENANCE_NOTICE1)
190
+
191
+ print(gr.__version__)
192
+ run_button.click(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
193
+ outputs=[input_text, result_text, hidden_image_hash])
194
+ input_text.submit(fn=post,inputs=[input_text, temperature, top_p, top_k, image_prompt, result_text, hidden_image_hash, grounding, cogagent, grounding_template, agent_template],
195
+ outputs=[input_text, result_text, hidden_image_hash])
196
+ clear_button.click(fn=clear_fn, inputs=clear_button, outputs=[input_text, result_text, image_prompt])
197
+ image_prompt.upload(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
198
+ image_prompt.clear(fn=clear_fn2, inputs=clear_button, outputs=[result_text])
199
+
200
+ print(gr.__version__)
201
+
202
+ demo.queue(concurrency_count=10)
203
+ demo.launch()
204
+
205
+ if __name__ == '__main__':
206
+ main()