Spaces:
Running
Running
File size: 17,122 Bytes
c68e323 23991ab c68e323 0615f24 c68e323 0615f24 c68e323 0615f24 c68e323 0615f24 c68e323 0615f24 c68e323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
from io import BytesIO
import gradio as gr
from PIL import Image
import httpx
from gradio_toggle import Toggle
from pathlib import Path
import numpy as np
import os
api_server = os.environ["NXN_API_SERVER"]
tryon_endpoint = os.environ["NXN_TRYON_ENDPOINT"]
tryoff_endpoint = os.environ["NXN_TRYOFF_ENDPOINT"]
MAX_DIM = 2048
MIN_DIM = 500
def encode_bytes(image: Image.Image, format="PNG"):
buffered = BytesIO()
image.save(buffered, format=format)
buffered.seek(0)
return buffered
# str to int
def garment_type_to_int(garment_type: str):
garment_dict = {"Upper": 0, "Lower": 1, "Full": 2}
if garment_dict[garment_type] is None:
raise gr.Error("Unexpected garment condition error")
else:
return garment_dict[garment_type]
def extract_image_from_input(image_data):
if isinstance(image_data, dict) and "background" in image_data:
return image_data["background"].convert("RGB")
else:
return image_data.convert("RGB")
def resize_image_if_needed(image: Image.Image):
if image is None:
return None, False
original_width, original_height = image.size
if original_width > MAX_DIM or original_height > MAX_DIM:
gr.Warning("A provided image is too large and has been resized")
scale_factor = min(MAX_DIM / original_width, MAX_DIM / original_height)
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
return image.resize((new_width, new_height), Image.Resampling.LANCZOS), True
elif original_width < MIN_DIM or original_height < MIN_DIM:
gr.Warning("A provided image is too small and has been resized")
scale_factor = max(MIN_DIM / original_width, MIN_DIM / original_height)
new_width = int(original_width * scale_factor)
new_height = int(original_height * scale_factor)
return image.resize((new_width, new_height), Image.Resampling.LANCZOS), True
return image, False
# API Helpers
async def _call_api(url: str, files: dict, data: dict):
try:
async with httpx.AsyncClient(timeout=3600) as client:
response = await client.post(url, data=data, files=files)
response.raise_for_status()
return Image.open(BytesIO(response.content))
except httpx.RequestError as e:
print(f"API request failed: {e}")
raise gr.Error("Network error: Could not connect to the model API. Please try again later.")
except Exception as e:
print(f"An unexpected error occurred: {e}")
raise
raise gr.Error("An unexpected error occurred. The model may have failed to process the images.")
async def call_tryon_api(model_image: Image.Image, garment_image: Image.Image, garment_type: int, mask: Image.Image=None, seed: int=1234):
files = [
("images", ("target.png", encode_bytes(model_image), "image/png")),
("images", ("garment.png", encode_bytes(garment_image), "image/png"))
]
if mask:
files.append(("images", ("mask.png", encode_bytes(mask, format="PNG"), "image/png")))
data = {'garment_type': garment_type, 'seed': seed}
return await _call_api(f"{api_server}/{tryon_endpoint}", files=files, data=data)
async def call_tryoff_api(model_image: Image.Image, garment_type: int, seed: int=1234):
files = [ ("images", ("target.png", encode_bytes(model_image), "image/png")) ]
data = {'garment_type': garment_type, 'seed': seed}
return await _call_api(f"{api_server}/{tryoff_endpoint}", files=files, data=data)
async def api_helper(model_image_dict: dict, garment_image: Image.Image, garment_type: str, is_tryoff: bool, seed: int):
if model_image_dict is None or model_image_dict["background"] is None:
raise gr.Error("Missing model image")
elif not is_tryoff and garment_image is None:
raise gr.Error("Missing garment image for Try-On")
# Because Gradio ImageEditor can return a dict
model_image = extract_image_from_input(model_image_dict)
model_image, model_resized = resize_image_if_needed(model_image)
garment_image, _ = resize_image_if_needed(garment_image)
garment_type_int = garment_type_to_int(garment_type)
if is_tryoff:
return await call_tryoff_api(model_image, garment_type_int, seed)
else:
mask_image = None
if isinstance(model_image_dict, dict) and model_image_dict.get("layers"):
mask = model_image_dict["layers"][0]
mask_array = np.array(mask)
if not np.all(mask_array < 10):
is_black = np.all(mask_array < 10, axis=2)
mask_image = Image.fromarray(((~is_black) * 255).astype(np.uint8))
if model_resized:
mask_image = mask_image.resize(model_image.size, Image.Resampling.NEAREST)
else:
gr.Info("No mask provided, using auto-generated mask")
return await call_tryon_api(model_image, garment_image, garment_type_int, mask=mask_image, seed=seed)
# Event handler functions
def handle_toggle(toggle_value):
"""Handle toggle state changes - controls garment input visibility"""
toggle_label = gr.update(value=toggle_value, label="Try-Off") if toggle_value else gr.update(value=toggle_value, label="Try-On")
submit_btn_label = gr.update(value="Run Try-Off", elem_id="tryoff-color") if toggle_value else gr.update(value="Run Try-On", elem_id="tryon-color")
if toggle_value:
# Clear the image and disable the component
return gr.update(value=None, elem_classes=["disabled-image"], interactive=False), toggle_label, submit_btn_label
else:
# Re-enable the component without clearing the image
return gr.update(elem_classes=[], interactive=True), toggle_label, submit_btn_label
def set_tryon(garment_img, model_img, output_img, garment_condition):
garment_update, toggle_label, submit_btn_label = handle_toggle(False)
return garment_update, toggle_label, submit_btn_label
def set_tryoff(model_img, output_img, garment_condition):
garment_update, toggle_label, submit_btn_label = handle_toggle(True)
return garment_update, toggle_label, submit_btn_label
def garment_sort_key(filename):
if filename.startswith("upper_"):
return (0, filename)
elif filename.startswith("lower_"):
return (1, filename)
elif filename.startswith("full_"):
return (2, filename)
else:
return (3, filename)
# Get images for examples
images_path = os.path.join(os.path.dirname(__file__),'images')
garment_list = os.listdir(os.path.join(images_path, "garments"))
garment_list_path = [
os.path.join(images_path, "garments", cloth)
for cloth in sorted(garment_list, key=garment_sort_key)
]
people_list = os.listdir(os.path.join(images_path, "persons"))
people_list_path = [os.path.join(images_path, "persons", human) for human in sorted(people_list)]
gr.set_static_paths(paths=[Path.cwd().absolute()/"images"])
# Create the Gradio interface
with gr.Blocks(css_paths="styles.css", theme=gr.themes.Ocean(), title="Voost: Virtual Try-On/Off") as demo:
with gr.Row():
gr.HTML("""
<div class="header-container">
<div class="logo-container">
<a href="https://nxn.ai/">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="/gradio_api/file=images/dark_mode_logo.png"/>
<img src='/gradio_api/file=images/nxn_logo_transparent.png' style="height: 120px; width: 150px;"/>
</picture>
</a>
</div>
<div style="display: flex; flex-direction: column; align-items: center; text-align: center;">
<div style="font-size: 45px; margin-bottom: 10px;">
<b>Voost: Virtual Try-On/Off</b>
</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://arxiv.org/abs/2508.04825">
<img src='https://img.shields.io/badge/arXiv-2508.04825-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
</a>  
<a href='https://nxnai.github.io/Voost/'>
<img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
</a>  
<a href="https://github.com/nxnai/Voost">
<img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
</a>  
<a href="https://github.com/nxnai/Voost/blob/main/LICENSE">
<img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
</a>
</div>
<div style="font-size: 14px; color: #666; margin-top: 5px;">
Website: <a href="https://nxn.ai" target="_blank">https://nxn.ai</a> Inquiries: <a href="mailto:[email protected]">[email protected]</a>
</div>
</div>
</div>
""")
gr.Markdown("---")
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<center><h4>Step 1: Select <em>Try-On</em> or <em>Try-Off</em> mode. </h4></center>")
input_toggle = Toggle(
label="Try-On",
value=False,
interactive=True,
elem_classes=["button-container"],
color="rgba(177, 162, 239, .5)",
elem_id="toggle-modify"
)
with gr.Column(scale=1):
gr.HTML("<center><h4>Step 2: Select your desired garment type.</h4></center>")
garment_condition = gr.Radio(
choices=["Upper", "Lower", "Full"],
value="Upper",
interactive=True,
elem_classes=["center-item"],
show_label=False,
label="Garment Type"
)
with gr.Row():
with gr.Column(scale=1, elem_id="col-left"):
gr.HTML("<center><h4>Step 3: Upload a model image. <br> (Optional) Use the draw tool to create the mask. ⬇️</h4></center>")
model_image = gr.ImageEditor(
label="Model Image",
type="pil",
height=450,
width=600,
interactive=True,
brush=gr.Brush(
default_color=f"rgba(255, 255, 255, 0.5)",
colors=["rgb(255, 255, 255)"]
),
eraser=gr.Eraser(),
placeholder="Upload an image\n or\n select the draw tool on the left\n to start editing mask"
)
model_examples = gr.Examples(
examples=people_list_path,
inputs=[model_image],
label="Model Examples",
examples_per_page=12,
)
with gr.Column(scale=1, elem_id="col-mid"):
gr.HTML("<center><h4>Step 4: Upload a garment image. ⬇️ <br><br></h4></center>")
garment_input = gr.Image(
label="Garment Image",
type="pil",
height=450,
width=350,
visible=True,
interactive=True,
)
garment_examples = gr.Examples(
examples=garment_list_path,
inputs=[garment_input],
label="Garment Examples",
examples_per_page=12
)
with gr.Column(scale=1, elem_id="col-right"):
gr.HTML("<center><h4>Step 5: Click the button below to run the model! ⬇️ <br><br></h4></center>")
output_image = gr.Image(
format="png",
label="Output Image",
type="pil",
height=450,
width=550,
interactive=False,
)
submit_btn = gr.Button(
value="Run Try-On",
elem_id="tryon-color"
)
seed_input = gr.Slider(
label="Seed",
value=1234,
minimum=0,
maximum=2**16 - 1, # 2**32 - 1
step=1,
interactive=True,
elem_id="seed-input",
)
gr.HTML("""
<div style="margin-top: 15px; padding: 10px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #ffc107;">
<p style="margin: 0; font-size: 16px; color: #856404;">
<strong>⚠️ Note:</strong> Errors may occur due to high concurrent requests or NSFW content detection. Please try again if needed.
</p>
</div>
""")
gr.Markdown("---")
with gr.Row():
tryon_examples = gr.Examples(
examples=[
["Upper", "images/examples/tryon/persons/1.jpg", "images/examples/tryon/garments/1.jpg", "images/examples/tryon/outputs/1.webp"],
["Lower", "images/examples/tryon/persons/2.jpg", "images/examples/tryon/garments/2.jpg", "images/examples/tryon/outputs/2.webp"],
["Full", "images/examples/tryon/persons/3.jpg", "images/examples/tryon/garments/3.jpg", "images/examples/tryon/outputs/3.webp"],
],
inputs=[garment_condition, model_image, garment_input, output_image],
fn=set_tryon,
outputs=[garment_input, input_toggle, submit_btn],
label="Try-on Examples",
run_on_click=True
)
tryoff_examples = gr.Examples(
examples=[
["Upper", "images/examples/tryoff/persons/1.jpg", "images/examples/tryoff/outputs/1.webp"],
["Lower", "images/examples/tryoff/persons/2.jpg", "images/examples/tryoff/outputs/2.webp"],
["Full", "images/examples/tryoff/persons/3.jpg", "images/examples/tryoff/outputs/3.webp"],
],
inputs=[garment_condition, model_image, output_image],
fn=set_tryoff,
outputs=[garment_input, input_toggle, submit_btn],
label="Try-Off Examples",
run_on_click=True
)
gr.Markdown("---")
gr.HTML("""
<div class="footer-container">
<div class="footer-col footer-logo">
</div>
<div class="footer-col footer-main">
<h3>AI Studio Shaping the New Architecture of Fashion Imagery</h3>
<p>We’re a team of researchers from <b>Stanford</b>, <b>NYU</b>, <b>Seoul National University</b>, and <b>KAIST</b>. At <b>NXN Labs</b>, we’re developing an <b>image-to-image virtual try-on/try-off diffusion model</b>, designed to push the boundaries of digital production in the fashion industry.
This demo is <b>not the full version</b> of our model - it is based on our recent research work, <a href="https://arxiv.org/abs/2508.04825">Voost</a> - but it reflects the underlying research direction.
We’re headquartered in <b>San Francisco</b> and <b>Seoul</b>. If you’re a <b>brand or retailer</b> interested in using our full model API, please sign up at <a href="https://nxn.ai" target="_blank">https://nxn.ai</a> with your business name, and we’ll get back to you within 1–2 business days.
For part-time or full-time research roles, contact <a href="mailto:[email protected]">[email protected]</a>.
</p>
<p>©2025 NXN Labs ——— Copyright.</p>
</div>
<div class="footer-col footer-credits">
<h3>Special Thanks to NXN Labs Summer Interns:</h3>
<p>
<a href="https://www.linkedin.com/in/james-fu-74a16524b/" target="_blank">James Fu</a>,
<a href="https://www.linkedin.com/in/wing-lai-7a8987271/" target="_blank">Wing Lai</a>,
<a href="https://www.linkedin.com/in/stephen-park-53640332b/" target="_blank">Stephen Park</a>
<br><small>for their valuable contributions to this demo space</small>
</p>
</div>
</div>
""")
# Connect toggle to control garment input visibility
input_toggle.change(
fn=handle_toggle,
inputs=[input_toggle],
outputs=[garment_input, input_toggle, submit_btn],
api_name=False
)
submit_btn.click(
fn=api_helper,
inputs=[model_image, garment_input, garment_condition, input_toggle, seed_input],
outputs=[output_image],
concurrency_limit=7,
api_name=False
)
if __name__ == "__main__":
demo.launch(allowed_paths=["/gradio_api/images/examples"], share=True) |