File size: 17,122 Bytes
c68e323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23991ab
c68e323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0615f24
c68e323
 
 
 
 
 
 
 
 
 
0615f24
c68e323
 
 
 
 
 
 
 
 
 
 
0615f24
c68e323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0615f24
c68e323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0615f24
c68e323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
from io import BytesIO
import gradio as gr
from PIL import Image
import httpx
from gradio_toggle import Toggle
from pathlib import Path
import numpy as np
import os

api_server = os.environ["NXN_API_SERVER"]
tryon_endpoint = os.environ["NXN_TRYON_ENDPOINT"]
tryoff_endpoint = os.environ["NXN_TRYOFF_ENDPOINT"]

MAX_DIM = 2048
MIN_DIM = 500

def encode_bytes(image: Image.Image, format="PNG"):
    buffered = BytesIO()
    image.save(buffered, format=format)
    buffered.seek(0)
    return buffered

# str to int
def garment_type_to_int(garment_type: str):
    garment_dict = {"Upper": 0, "Lower": 1, "Full": 2}
    if garment_dict[garment_type] is None:
        raise gr.Error("Unexpected garment condition error")
    else:
        return garment_dict[garment_type]

def extract_image_from_input(image_data):
    if isinstance(image_data, dict) and "background" in image_data:
        return image_data["background"].convert("RGB")
    else:
        return image_data.convert("RGB")

def resize_image_if_needed(image: Image.Image):
    if image is None:
        return None, False
    
    original_width, original_height = image.size
    
    if original_width > MAX_DIM or original_height > MAX_DIM:
        gr.Warning("A provided image is too large and has been resized")
        scale_factor = min(MAX_DIM / original_width, MAX_DIM / original_height)
        new_width = int(original_width * scale_factor)
        new_height = int(original_height * scale_factor)
        return image.resize((new_width, new_height), Image.Resampling.LANCZOS), True
    elif original_width < MIN_DIM or original_height < MIN_DIM:
        gr.Warning("A provided image is too small and has been resized")
        scale_factor = max(MIN_DIM / original_width, MIN_DIM / original_height)
        new_width = int(original_width * scale_factor)
        new_height = int(original_height * scale_factor)
        return image.resize((new_width, new_height), Image.Resampling.LANCZOS), True
    
    return image, False


# API Helpers
async def _call_api(url: str, files: dict, data: dict):
    try:
        async with httpx.AsyncClient(timeout=3600) as client:
            response = await client.post(url, data=data, files=files)
            response.raise_for_status()
            return Image.open(BytesIO(response.content))
    except httpx.RequestError as e:
        print(f"API request failed: {e}")
        raise gr.Error("Network error: Could not connect to the model API. Please try again later.")
    except Exception as e:
        print(f"An unexpected error occurred: {e}")
        raise
        raise gr.Error("An unexpected error occurred. The model may have failed to process the images.")


async def call_tryon_api(model_image: Image.Image, garment_image: Image.Image, garment_type: int, mask: Image.Image=None, seed: int=1234):
    files = [ 
        ("images", ("target.png", encode_bytes(model_image), "image/png")), 
        ("images", ("garment.png", encode_bytes(garment_image), "image/png")) 
    ]
    if mask:
        files.append(("images", ("mask.png", encode_bytes(mask, format="PNG"), "image/png")))
    data = {'garment_type': garment_type, 'seed': seed}
    return await _call_api(f"{api_server}/{tryon_endpoint}", files=files, data=data)

async def call_tryoff_api(model_image: Image.Image, garment_type: int, seed: int=1234):
    files = [ ("images", ("target.png", encode_bytes(model_image), "image/png")) ]
    data = {'garment_type': garment_type, 'seed': seed}
    return await _call_api(f"{api_server}/{tryoff_endpoint}", files=files, data=data)

async def api_helper(model_image_dict: dict, garment_image: Image.Image, garment_type: str, is_tryoff: bool, seed: int):
    if model_image_dict is None or model_image_dict["background"] is None:
        raise gr.Error("Missing model image")
    elif not is_tryoff and garment_image is None:
        raise gr.Error("Missing garment image for Try-On")

    # Because Gradio ImageEditor can return a dict
    model_image = extract_image_from_input(model_image_dict)
    model_image, model_resized = resize_image_if_needed(model_image)

    garment_image, _ = resize_image_if_needed(garment_image)
    
    garment_type_int = garment_type_to_int(garment_type)

    if is_tryoff:
        return await call_tryoff_api(model_image, garment_type_int, seed)
    else:
        mask_image = None
        if isinstance(model_image_dict, dict) and model_image_dict.get("layers"):
            mask = model_image_dict["layers"][0]
            mask_array = np.array(mask)
            if not np.all(mask_array < 10):
                is_black = np.all(mask_array < 10, axis=2)
                mask_image = Image.fromarray(((~is_black) * 255).astype(np.uint8))
                if model_resized:
                    mask_image = mask_image.resize(model_image.size, Image.Resampling.NEAREST)
            else:
                gr.Info("No mask provided, using auto-generated mask")

        return await call_tryon_api(model_image, garment_image, garment_type_int, mask=mask_image, seed=seed)

# Event handler functions
def handle_toggle(toggle_value):
    """Handle toggle state changes - controls garment input visibility"""
    toggle_label = gr.update(value=toggle_value, label="Try-Off") if toggle_value else gr.update(value=toggle_value, label="Try-On")
    submit_btn_label = gr.update(value="Run Try-Off", elem_id="tryoff-color") if toggle_value else gr.update(value="Run Try-On", elem_id="tryon-color")
    
    if toggle_value:
        # Clear the image and disable the component
        return gr.update(value=None, elem_classes=["disabled-image"], interactive=False), toggle_label, submit_btn_label
    else:
        # Re-enable the component without clearing the image
        return gr.update(elem_classes=[], interactive=True), toggle_label, submit_btn_label

def set_tryon(garment_img, model_img, output_img, garment_condition):
    garment_update, toggle_label, submit_btn_label = handle_toggle(False)
    return garment_update, toggle_label, submit_btn_label

def set_tryoff(model_img, output_img, garment_condition):
    garment_update, toggle_label, submit_btn_label = handle_toggle(True)
    return garment_update, toggle_label, submit_btn_label

def garment_sort_key(filename):
    if filename.startswith("upper_"):
        return (0, filename)
    elif filename.startswith("lower_"):
        return (1, filename)
    elif filename.startswith("full_"):
        return (2, filename)
    else:
        return (3, filename)

# Get images for examples
images_path = os.path.join(os.path.dirname(__file__),'images')

garment_list = os.listdir(os.path.join(images_path, "garments"))
garment_list_path = [
    os.path.join(images_path, "garments", cloth)
    for cloth in sorted(garment_list, key=garment_sort_key)
]

people_list = os.listdir(os.path.join(images_path, "persons"))
people_list_path = [os.path.join(images_path, "persons", human) for human in sorted(people_list)]

gr.set_static_paths(paths=[Path.cwd().absolute()/"images"])

# Create the Gradio interface
with gr.Blocks(css_paths="styles.css", theme=gr.themes.Ocean(), title="Voost: Virtual Try-On/Off") as demo:
    with gr.Row():
        gr.HTML("""
            <div class="header-container">
                <div class="logo-container">
                    <a href="https://nxn.ai/">
                        <picture>
                            <source media="(prefers-color-scheme: dark)" srcset="/gradio_api/file=images/dark_mode_logo.png"/>
                            <img src='/gradio_api/file=images/nxn_logo_transparent.png' style="height: 120px; width: 150px;"/>
                        </picture>
                    </a>
                </div>
                <div style="display: flex; flex-direction: column; align-items: center; text-align: center;">
                    <div style="font-size: 45px; margin-bottom: 10px;">
                        <b>Voost: Virtual Try-On/Off</b>
                    </div>
                    <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                        <a href="https://arxiv.org/abs/2508.04825">
                            <img src='https://img.shields.io/badge/arXiv-2508.04825-red?style=flat&logo=arXiv&logoColor=red' alt='arxiv'>
                        </a> &ensp;

                        <a href='https://nxnai.github.io/Voost/'>
                            <img src='https://img.shields.io/badge/Webpage-Project-silver?style=flat&logo=&logoColor=orange' alt='webpage'>
                        </a> &ensp;

                        <a href="https://github.com/nxnai/Voost">
                            <img src='https://img.shields.io/badge/GitHub-Repo-blue?style=flat&logo=GitHub' alt='GitHub'>
                        </a> &ensp;
                        
                        <a href="https://github.com/nxnai/Voost/blob/main/LICENSE">
                            <img src='https://img.shields.io/badge/License-CC BY--NC--SA--4.0-lightgreen?style=flat&logo=Lisence' alt='License'>
                        </a>
                    </div>
                    <div style="font-size: 14px; color: #666; margin-top: 5px;">
                        Website: <a href="https://nxn.ai" target="_blank">https://nxn.ai</a> &nbsp; &nbsp; &nbsp; Inquiries: <a href="mailto:[email protected]">[email protected]</a>
                    </div>
                </div>
            </div>
        """)

    gr.Markdown("---")

    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<center><h4>Step 1: Select <em>Try-On</em> or <em>Try-Off</em> mode. </h4></center>")
            input_toggle = Toggle(
                label="Try-On",
                value=False,
                interactive=True,
                elem_classes=["button-container"],
                color="rgba(177, 162, 239, .5)",
                elem_id="toggle-modify"
        )
        
        with gr.Column(scale=1):
            gr.HTML("<center><h4>Step 2: Select your desired garment type.</h4></center>")
            garment_condition = gr.Radio(
                choices=["Upper", "Lower", "Full"],
                value="Upper", 
                interactive=True,
                elem_classes=["center-item"],
                show_label=False,
                label="Garment Type"
            )

    with gr.Row():
        with gr.Column(scale=1, elem_id="col-left"):
            gr.HTML("<center><h4>Step 3: Upload a model image. <br> (Optional) Use the draw tool to create the mask. ⬇️</h4></center>")
            model_image = gr.ImageEditor(
                label="Model Image",
                type="pil",
                height=450,
                width=600,
                interactive=True,
                brush=gr.Brush(
                    default_color=f"rgba(255, 255, 255, 0.5)",
                    colors=["rgb(255, 255, 255)"]
                ),
                eraser=gr.Eraser(),
                placeholder="Upload an image\n or\n select the draw tool on the left\n to start editing mask"
            )

            model_examples = gr.Examples(
                examples=people_list_path,
                inputs=[model_image],
                label="Model Examples",
                examples_per_page=12,
            )
        
        with gr.Column(scale=1, elem_id="col-mid"):
            gr.HTML("<center><h4>Step 4: Upload a garment image. ⬇️ <br><br></h4></center>")
            garment_input = gr.Image(
                label="Garment Image",
                type="pil",
                height=450,
                width=350,
                visible=True,
                interactive=True,
            )
            
            garment_examples = gr.Examples(
                examples=garment_list_path,
                inputs=[garment_input],
                label="Garment Examples",
                examples_per_page=12
            )

        with gr.Column(scale=1, elem_id="col-right"):
            gr.HTML("<center><h4>Step 5: Click the button below to run the model! ⬇️ <br><br></h4></center>")
            output_image = gr.Image(
                format="png",
                label="Output Image",
                type="pil",
                height=450,
                width=550,
                interactive=False,
            )

            submit_btn = gr.Button(
                value="Run Try-On",
                elem_id="tryon-color"
            )
            seed_input = gr.Slider(
                label="Seed",
                value=1234,
                minimum=0,
                maximum=2**16 - 1, # 2**32 - 1
                step=1,
                interactive=True,
                elem_id="seed-input",
            )
    
            gr.HTML("""
            <div style="margin-top: 15px; padding: 10px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #ffc107;">
                <p style="margin: 0; font-size: 16px; color: #856404;">
                    <strong>⚠️ Note:</strong> Errors may occur due to high concurrent requests or NSFW content detection. Please try again if needed.
                </p>
            </div>
            """)

    gr.Markdown("---")

    with gr.Row():
        tryon_examples = gr.Examples(
            examples=[
                ["Upper", "images/examples/tryon/persons/1.jpg", "images/examples/tryon/garments/1.jpg", "images/examples/tryon/outputs/1.webp"],
                ["Lower", "images/examples/tryon/persons/2.jpg", "images/examples/tryon/garments/2.jpg", "images/examples/tryon/outputs/2.webp"],
                ["Full", "images/examples/tryon/persons/3.jpg", "images/examples/tryon/garments/3.jpg", "images/examples/tryon/outputs/3.webp"],
            ],
            inputs=[garment_condition, model_image, garment_input, output_image],
            fn=set_tryon,
            outputs=[garment_input, input_toggle, submit_btn],
            label="Try-on Examples",
            run_on_click=True
        )

        tryoff_examples = gr.Examples(
            examples=[
                ["Upper", "images/examples/tryoff/persons/1.jpg", "images/examples/tryoff/outputs/1.webp"],
                ["Lower", "images/examples/tryoff/persons/2.jpg", "images/examples/tryoff/outputs/2.webp"],
                ["Full", "images/examples/tryoff/persons/3.jpg", "images/examples/tryoff/outputs/3.webp"],
            ],
            inputs=[garment_condition, model_image, output_image],
            fn=set_tryoff,
            outputs=[garment_input, input_toggle, submit_btn],
            label="Try-Off Examples",
            run_on_click=True
        )

    gr.Markdown("---")
    
    gr.HTML("""
        <div class="footer-container">
            <div class="footer-col footer-logo">
            </div>
            <div class="footer-col footer-main">
                <h3>AI Studio Shaping the New Architecture of Fashion Imagery</h3>
                <p>We’re a team of researchers from <b>Stanford</b>, <b>NYU</b>, <b>Seoul National University</b>, and <b>KAIST</b>. At <b>NXN Labs</b>, we’re developing an <b>image-to-image virtual try-on/try-off diffusion model</b>, designed to push the boundaries of digital production in the fashion industry.
                    This demo is <b>not the full version</b> of our model - it is based on our recent research work, <a href="https://arxiv.org/abs/2508.04825">Voost</a> - but it reflects the underlying research direction.
                    We’re headquartered in <b>San Francisco</b> and <b>Seoul</b>. If you’re a <b>brand or retailer</b> interested in using our full model API, please sign up at <a href="https://nxn.ai" target="_blank">https://nxn.ai</a> with your business name, and we’ll get back to you within 1–2 business days.
                    For part-time or full-time research roles, contact <a href="mailto:[email protected]">[email protected]</a>.
                </p>
                <p>©2025 NXN Labs   ———  Copyright.</p>
            </div>
            <div class="footer-col footer-credits">
                <h3>Special Thanks to NXN Labs Summer Interns:</h3>
                <p>
                <a href="https://www.linkedin.com/in/james-fu-74a16524b/" target="_blank">James Fu</a>,
                <a href="https://www.linkedin.com/in/wing-lai-7a8987271/" target="_blank">Wing Lai</a>,
                <a href="https://www.linkedin.com/in/stephen-park-53640332b/" target="_blank">Stephen Park</a>
                <br><small>for their valuable contributions to this demo space</small>
                </p>
            </div>
        </div>
    """)

    # Connect toggle to control garment input visibility
    input_toggle.change(
        fn=handle_toggle,
        inputs=[input_toggle],
        outputs=[garment_input, input_toggle, submit_btn],
        api_name=False
    )

    submit_btn.click(
        fn=api_helper,
        inputs=[model_image, garment_input, garment_condition, input_toggle, seed_input],
        outputs=[output_image],
        concurrency_limit=7,
        api_name=False
    )


if __name__ == "__main__":
    demo.launch(allowed_paths=["/gradio_api/images/examples"], share=True)