James McCool
commited on
Commit
·
e1d2eb8
1
Parent(s):
b2bcefd
Add dynamic column renaming for player data in position export dictionary, improving flexibility in handling varying column names for 'Name' and 'ID'.
Browse files
app.py
CHANGED
@@ -34,6 +34,9 @@ all_column_stack_sports = ['LOL', 'NCAAF', 'WNBA', 'NBA', 'CS2']
|
|
34 |
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
|
35 |
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
|
36 |
|
|
|
|
|
|
|
37 |
st.markdown("""
|
38 |
<style>
|
39 |
/* Tab styling */
|
@@ -116,10 +119,26 @@ def create_position_export_dict(column_name, csv_file, site_var, type_var, sport
|
|
116 |
# Create the export dictionary for this position
|
117 |
if site_var == 'Draftkings':
|
118 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
else:
|
121 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
except Exception as e:
|
125 |
st.error(f"Error creating position export dict for {column_name}: {str(e)}")
|
|
|
34 |
player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
|
35 |
player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
|
36 |
|
37 |
+
name_column_list = ['Name', 'Nickname', 'NickName', 'name', 'nickname', 'nickName']
|
38 |
+
id_column_list = ['ID', 'id', 'Id', 'iD', 'player_ID', 'Player_ID', 'player_id', 'Player_id']
|
39 |
+
|
40 |
st.markdown("""
|
41 |
<style>
|
42 |
/* Tab styling */
|
|
|
119 |
# Create the export dictionary for this position
|
120 |
if site_var == 'Draftkings':
|
121 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
|
122 |
+
for name_column in name_column_list:
|
123 |
+
if name_column in filtered_df.columns:
|
124 |
+
filtered_df = filtered_df.rename(columns={name_column: 'Name'})
|
125 |
+
break
|
126 |
+
for id_column in id_column_list:
|
127 |
+
if id_column in filtered_df.columns:
|
128 |
+
filtered_df = filtered_df.rename(columns={id_column: 'ID'})
|
129 |
+
break
|
130 |
+
return dict(zip(filtered_df['Name + ID'], filtered_df['ID']))
|
131 |
else:
|
132 |
filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
|
133 |
+
for name_column in name_column_list:
|
134 |
+
if name_column in filtered_df.columns:
|
135 |
+
filtered_df = filtered_df.rename(columns={name_column: 'Nickname'})
|
136 |
+
break
|
137 |
+
for id_column in id_column_list:
|
138 |
+
if id_column in filtered_df.columns:
|
139 |
+
filtered_df = filtered_df.rename(columns={id_column: 'ID'})
|
140 |
+
break
|
141 |
+
return dict(zip(filtered_df['Nickname'], filtered_df['ID']))
|
142 |
|
143 |
except Exception as e:
|
144 |
st.error(f"Error creating position export dict for {column_name}: {str(e)}")
|