James McCool commited on
Commit
e1d2eb8
·
1 Parent(s): b2bcefd

Add dynamic column renaming for player data in position export dictionary, improving flexibility in handling varying column names for 'Name' and 'ID'.

Browse files
Files changed (1) hide show
  1. app.py +21 -2
app.py CHANGED
@@ -34,6 +34,9 @@ all_column_stack_sports = ['LOL', 'NCAAF', 'WNBA', 'NBA', 'CS2']
34
  player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
35
  player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
36
 
 
 
 
37
  st.markdown("""
38
  <style>
39
  /* Tab styling */
@@ -116,10 +119,26 @@ def create_position_export_dict(column_name, csv_file, site_var, type_var, sport
116
  # Create the export dictionary for this position
117
  if site_var == 'Draftkings':
118
  filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
119
- return dict(zip(filtered_df['Name'], filtered_df['Name + ID']))
 
 
 
 
 
 
 
 
120
  else:
121
  filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
122
- return dict(zip(filtered_df['Nickname'], filtered_df['Id']))
 
 
 
 
 
 
 
 
123
 
124
  except Exception as e:
125
  st.error(f"Error creating position export dict for {column_name}: {str(e)}")
 
34
  player_wrong_names_mlb = ['Enrique Hernandez', 'Joseph Cantillo', 'Mike Soroka', 'Jakob Bauers', 'Temi Fágbénlé']
35
  player_right_names_mlb = ['Kike Hernandez', 'Joey Cantillo', 'Michael Soroka', 'Jake Bauers', 'Temi Fagbenle']
36
 
37
+ name_column_list = ['Name', 'Nickname', 'NickName', 'name', 'nickname', 'nickName']
38
+ id_column_list = ['ID', 'id', 'Id', 'iD', 'player_ID', 'Player_ID', 'player_id', 'Player_id']
39
+
40
  st.markdown("""
41
  <style>
42
  /* Tab styling */
 
119
  # Create the export dictionary for this position
120
  if site_var == 'Draftkings':
121
  filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Name'])
122
+ for name_column in name_column_list:
123
+ if name_column in filtered_df.columns:
124
+ filtered_df = filtered_df.rename(columns={name_column: 'Name'})
125
+ break
126
+ for id_column in id_column_list:
127
+ if id_column in filtered_df.columns:
128
+ filtered_df = filtered_df.rename(columns={id_column: 'ID'})
129
+ break
130
+ return dict(zip(filtered_df['Name + ID'], filtered_df['ID']))
131
  else:
132
  filtered_df = filtered_df.sort_values(by='Salary', ascending=False).drop_duplicates(subset=['Nickname'])
133
+ for name_column in name_column_list:
134
+ if name_column in filtered_df.columns:
135
+ filtered_df = filtered_df.rename(columns={name_column: 'Nickname'})
136
+ break
137
+ for id_column in id_column_list:
138
+ if id_column in filtered_df.columns:
139
+ filtered_df = filtered_df.rename(columns={id_column: 'ID'})
140
+ break
141
+ return dict(zip(filtered_df['Nickname'], filtered_df['ID']))
142
 
143
  except Exception as e:
144
  st.error(f"Error creating position export dict for {column_name}: {str(e)}")