|
import streamlit as st |
|
st.set_page_config(layout="wide") |
|
import numpy as np |
|
import pandas as pd |
|
from rapidfuzz import process, fuzz |
|
from collections import Counter |
|
from pymongo.mongo_client import MongoClient |
|
from pymongo.server_api import ServerApi |
|
from datetime import datetime |
|
|
|
|
|
|
|
@st.cache_resource |
|
def init_conn(): |
|
|
|
uri = st.secrets['mongo_uri'] |
|
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) |
|
db = client['Contest_Information'] |
|
|
|
return db |
|
|
|
def grab_contest_names(db, sport, type): |
|
if type == 'Classic': |
|
db_type = 'reg' |
|
elif type == 'Showdown': |
|
db_type = 'sd' |
|
collection = db[f'{sport}_{db_type}_contest_info'] |
|
cursor = collection.find() |
|
|
|
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) |
|
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False)) |
|
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d') |
|
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date'] |
|
|
|
return contest_names, curr_info |
|
|
|
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map): |
|
if type == 'Classic': |
|
db_type = 'reg' |
|
elif type == 'Showdown': |
|
db_type = 'showdown' |
|
collection = db[f'{sport}_{db_type}_player_info'] |
|
cursor = collection.find() |
|
|
|
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) |
|
player_info = player_info[player_info['Contest Date'] == contest_date] |
|
player_info = player_info.rename(columns={'Display Name': 'Player'}) |
|
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first') |
|
|
|
info_maps = { |
|
'position_dict': dict(zip(player_info['Player'], player_info['Position'])), |
|
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])), |
|
'team_dict': dict(zip(player_info['Player'], player_info['Team'])), |
|
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])), |
|
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS'])) |
|
} |
|
|
|
return player_info, info_maps |
|
|
|
def grab_contest_payout_info(db, sport, type, contest_date, contest_name, contest_id_map, contest_id): |
|
if type == 'Classic': |
|
db_type = 'reg' |
|
elif type == 'Showdown': |
|
db_type = 'showdown' |
|
collection = db[f'{sport}_{db_type}_payout_info'] |
|
cursor = collection.find() |
|
|
|
payout_info = pd.DataFrame(list(cursor)).drop('_id', axis=1) |
|
payout_info = payout_info[payout_info['Contest Date'] == contest_date] |
|
payout_info = payout_info[payout_info['Contest ID'] == contest_id_map[contest_name]] |
|
|
|
entry_fee = payout_info['Entry Fee'].iloc[0] |
|
|
|
return payout_info, entry_fee |
|
|
|
def export_contest_file(db, sport, type, contest_date, contest_id, contest_data): |
|
if type == 'Classic': |
|
db_type = 'reg' |
|
elif type == 'Showdown': |
|
db_type = 'showdown' |
|
collection = db[f'{sport}_{db_type}_contest_data'] |
|
try: |
|
cursor = collection.find() |
|
contest_import = pd.DataFrame(list(cursor)).drop('_id', axis=1) |
|
if contest_id in contest_import['Contest ID'].values: |
|
return_message = "Data for this contest already exists, no need to upload, but we appreciate the effort!" |
|
return return_message |
|
except: |
|
contest_import = pd.DataFrame(columns = ['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Contest Date', 'Contest ID']) |
|
|
|
contest_data['Contest Date'] = contest_date |
|
contest_data['Contest ID'] = contest_id |
|
contest_import = pd.concat([contest_import, contest_data], ignore_index=True) |
|
|
|
chunk_size = 10000 |
|
collection.drop() |
|
for i in range(0, len(contest_import), chunk_size): |
|
for _ in range(5): |
|
try: |
|
df_chunk = contest_import.iloc[i:i + chunk_size] |
|
collection.insert_many(df_chunk.to_dict('records'), ordered=False) |
|
break |
|
except Exception as e: |
|
print(f"Retry due to error: {e}") |
|
return_message = "Contest data uploaded successfully! We appreciate the data!" |
|
|
|
return return_message |
|
|
|
def get_payout_for_position(finish_pos, payout_df, dupes_count): |
|
""" |
|
Calculate payout for a position, handling ties by splitting the combined payout. |
|
|
|
Args: |
|
finish_pos: The finish position (0-indexed) |
|
payout_df: DataFrame with payout structure |
|
dupes_count: Number of entries that are tied (from the 'dupes' column) |
|
""" |
|
if dupes_count == 1: |
|
|
|
matching_row = payout_df[ |
|
(payout_df['minPosition'] <= finish_pos + 1) & |
|
(payout_df['maxPosition'] >= finish_pos + 1) |
|
] |
|
if not matching_row.empty: |
|
return matching_row.iloc[0]['value'] |
|
else: |
|
return 0 |
|
else: |
|
|
|
|
|
start_pos = finish_pos + 1 |
|
end_pos = finish_pos + dupes_count |
|
|
|
total_payout = 0 |
|
for pos in range(start_pos, end_pos + 1): |
|
matching_row = payout_df[ |
|
(payout_df['minPosition'] <= pos) & |
|
(payout_df['maxPosition'] >= pos) |
|
] |
|
if not matching_row.empty: |
|
total_payout += matching_row.iloc[0]['value'] |
|
|
|
|
|
return total_payout / dupes_count |
|
|
|
def color_roi(val): |
|
"""Color ROI values: green if > 100%, red if < 100%""" |
|
if pd.isna(val): |
|
return '' |
|
if val > 1.0: |
|
return 'background-color: lightgreen' |
|
elif val < 1.0: |
|
return 'background-color: lightcoral' |
|
else: |
|
return 'background-color: lightyellow' |
|
|
|
db = init_conn() |
|
|
|
|
|
from global_func.load_contest_file import load_contest_file |
|
from global_func.create_player_exposures import create_player_exposures |
|
from global_func.create_stack_exposures import create_stack_exposures |
|
from global_func.create_stack_size_exposures import create_stack_size_exposures |
|
from global_func.create_general_exposures import create_general_exposures |
|
from global_func.grab_contest_data import grab_contest_data |
|
from global_func.create_player_comparison import create_player_comparison |
|
from global_func.create_stack_comparison import create_stack_comparison |
|
from global_func.create_size_comparison import create_size_comparison |
|
from global_func.create_general_comparison import create_general_comparison |
|
|
|
def is_valid_input(file): |
|
if isinstance(file, pd.DataFrame): |
|
return not file.empty |
|
else: |
|
return file is not None |
|
|
|
def highlight_row_condition(row): |
|
if row['BaseName'] == 'Backtesting_upload': |
|
return ['background-color: lightgreen'] * len(row) |
|
else: |
|
return [''] * len(row) |
|
|
|
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'} |
|
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'} |
|
roi_format = {'ROI': '{:.2%}', 'Total Fees': '{:.2f}', 'Total Payout': '{:.2f}'} |
|
|
|
st.markdown(""" |
|
<style> |
|
/* Tab styling */ |
|
.stElementContainer [data-baseweb="button-group"] { |
|
gap: 2.000rem; |
|
padding: 4px; |
|
} |
|
.stElementContainer [kind="segmented_control"] { |
|
height: 2.000rem; |
|
white-space: pre-wrap; |
|
background-color: #DAA520; |
|
color: white; |
|
border-radius: 20px; |
|
gap: 1px; |
|
padding: 10px 20px; |
|
font-weight: bold; |
|
transition: all 0.3s ease; |
|
} |
|
.stElementContainer [kind="segmented_controlActive"] { |
|
height: 3.000rem; |
|
background-color: #DAA520; |
|
border: 3px solid #FFD700; |
|
border-radius: 10px; |
|
color: black; |
|
} |
|
.stElementContainer [kind="segmented_control"]:hover { |
|
background-color: #FFD700; |
|
cursor: pointer; |
|
} |
|
|
|
div[data-baseweb="select"] > div { |
|
background-color: #DAA520; |
|
color: white; |
|
} |
|
|
|
</style>""", unsafe_allow_html=True) |
|
|
|
try: |
|
selected_tab = st.segmented_control( |
|
"Select Tab", |
|
options=["Data Load", "Contest Analysis"], |
|
selection_mode='single', |
|
default='Data Load', |
|
width='stretch', |
|
label_visibility='collapsed', |
|
key='tab_selector' |
|
) |
|
except: |
|
selected_tab = st.segmented_control( |
|
"Select Tab", |
|
options=["Data Load", "Contest Analysis"], |
|
selection_mode='single', |
|
default='Data Load', |
|
label_visibility='collapsed', |
|
key='tab_selector' |
|
) |
|
|
|
if selected_tab == 'Data Load': |
|
data_select, contest_upload, portfolio_upload = st.columns(3) |
|
|
|
with data_select: |
|
if st.button('Clear data', key='reset1'): |
|
st.session_state.clear() |
|
sport_options, date_options = st.columns(2) |
|
parse_type = 'Manual' |
|
with sport_options: |
|
sport_init = st.selectbox("Select Sport", ['NFL', 'MLB', 'MMA', 'GOLF', 'NBA', 'NHL', 'CFB', 'WNBA', 'NAS'], key='sport_init') |
|
type_init = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_init') |
|
try: |
|
contest_names, curr_info = grab_contest_names(db, sport_init, type_init) |
|
except: |
|
st.error("No contests found for this sport and/or game type") |
|
st.stop() |
|
|
|
with date_options: |
|
date_list = curr_info['Date'].sort_values(ascending=False).unique() |
|
|
|
date_select = st.selectbox("Select Date", date_list, key='date_select') |
|
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d') |
|
|
|
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True) |
|
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID'])) |
|
date_select = date_select.replace('-', '') |
|
date_select2 = date_select2.replace('-', '') |
|
|
|
contest_name_var = st.selectbox("Select Contest to load", name_parse) |
|
if parse_type == 'DB Search': |
|
if 'Contest_file_helper' in st.session_state: |
|
del st.session_state['Contest_file_helper'] |
|
if 'Contest_file' in st.session_state: |
|
del st.session_state['Contest_file'] |
|
if 'Contest_file' not in st.session_state: |
|
if st.button('Load Contest Data', key='load_contest_data'): |
|
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map) |
|
st.session_state['Contest_file'] = grab_contest_data(sport_init, contest_name_var, contest_id_map, date_select, date_select2) |
|
try: |
|
st.session_state['payout_info'], st.session_state['entry_fee'] = grab_contest_payout_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map, contest_id_map[contest_name_var]) |
|
except: |
|
st.session_state['payout_info'] = None |
|
else: |
|
pass |
|
with contest_upload: |
|
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/, or you can initiate a download with this link: https://www.draftkings.com/contest/exportfullstandingscsv/{contest_id_map[contest_name_var]}") |
|
if parse_type == 'Manual': |
|
if 'Contest_file_helper' in st.session_state: |
|
del st.session_state['Contest_file_helper'] |
|
if 'Contest_file' in st.session_state: |
|
del st.session_state['Contest_file'] |
|
if 'Contest_file' not in st.session_state: |
|
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) |
|
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map) |
|
try: |
|
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload']) |
|
except: |
|
st.warning('Please upload a Contest CSV') |
|
try: |
|
st.session_state['payout_info'], st.session_state['entry_fee'] = grab_contest_payout_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map, contest_id_map[contest_name_var]) |
|
except: |
|
st.session_state['payout_info'] = None |
|
else: |
|
pass |
|
|
|
with portfolio_upload: |
|
st.info("If you have a portfolio of lineups, you can upload them here to see how they would have performed against the field") |
|
if st.button('Clear portfolio', key='reset2'): |
|
st.session_state['portfolio_df'] = None |
|
del st.session_state['display_contest_info'] |
|
st.session_state['portfolio_file'] = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls']) |
|
try: |
|
st.session_state['portfolio_df'] = pd.read_csv(st.session_state['portfolio_file']) |
|
|
|
original_columns = st.session_state['portfolio_df'].columns.tolist() |
|
|
|
for col in original_columns: |
|
st.session_state['portfolio_df'][col] = st.session_state['portfolio_df'][col].astype(str).str.replace(r'\s*\([^)]*\)', '', regex=True).str.strip() |
|
|
|
st.session_state['portfolio_df']['BaseName'] = 'Backtesting_upload' |
|
st.session_state['portfolio_df']['EntryCount'] = len(st.session_state['portfolio_df']) |
|
|
|
st.session_state['portfolio_df'] = st.session_state['portfolio_df'][['BaseName', 'EntryCount'] + original_columns] |
|
|
|
if 'display_contest_info' in st.session_state and st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'] == 'Backtesting_upload'].empty: |
|
del st.session_state['display_contest_info'] |
|
else: |
|
pass |
|
except: |
|
st.session_state['portfolio_df'] = None |
|
|
|
|
|
if 'Contest_file' in st.session_state: |
|
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_init, st.session_state['player_info'], sport_init, st.session_state['portfolio_df']) |
|
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all') |
|
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True) |
|
if st.session_state['Contest'] is not None: |
|
success_col, info_col, upload_col, message_col = st.columns([2, 3, 1, 2]) |
|
with success_col: |
|
st.success('Contest file loaded, please wait for tables to load below before you switch tabs!') |
|
with info_col: |
|
st.warning("If you have confirmed that the data is correct, you can send the CSV to the database to enrich Paydirt's sources and help us create actionable tools and algorithms >>") |
|
with upload_col: |
|
if st.button('Send file to Database?', key='export_contest_file'): |
|
return_message = export_contest_file(db, sport_init, type_init, date_select, contest_id_map[contest_name_var], st.session_state['Contest_file']) |
|
with message_col: |
|
try: |
|
st.info(return_message) |
|
except: |
|
pass |
|
|
|
if 'Contest_file' in st.session_state: |
|
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'])) |
|
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS'])) |
|
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict'] |
|
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict'] |
|
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict'] |
|
|
|
excluded_cols = ['BaseName', 'EntryCount'] |
|
exclude_stacks = ['BaseName', 'EntryCount', 'SP', 'SP1', 'SP2', 'P1', 'P2', 'RB1', 'RB2', 'DST', 'G'] |
|
if 'Contest' in st.session_state and 'display_contest_info' not in st.session_state: |
|
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols] |
|
st.session_state['stack_columns'] = [col for col in st.session_state['Contest'].columns if col not in exclude_stacks] |
|
print(st.session_state['player_columns']) |
|
|
|
|
|
for col in st.session_state['player_columns']: |
|
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip() |
|
|
|
|
|
st.session_state['map_dict'] = { |
|
'pos_map': st.session_state['pos_dict'], |
|
'team_map': st.session_state['team_dict'], |
|
'salary_map': st.session_state['salary_dict'], |
|
'own_map': st.session_state['ownership_dict'], |
|
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True))) |
|
} |
|
|
|
working_df = st.session_state['Contest'].copy() |
|
|
|
|
|
team_map = st.session_state['map_dict']['team_map'] |
|
salary_map = st.session_state['salary_dict'] |
|
actual_map = st.session_state['actual_dict'] |
|
ownership_map = st.session_state['ownership_dict'] |
|
|
|
if st.session_state['type_init'] == 'Classic': |
|
|
|
player_teams = working_df[st.session_state['stack_columns']].apply( |
|
lambda x: x.map(team_map).fillna('') |
|
) |
|
|
|
|
|
def get_most_common_team(teams): |
|
if teams.empty or teams.isna().all(): |
|
return '', 0 |
|
non_empty_teams = teams[teams != ''] |
|
if len(non_empty_teams) == 0: |
|
return '', 0 |
|
team_counts = non_empty_teams.value_counts() |
|
return team_counts.index[0], team_counts.iloc[0] |
|
|
|
stack_results = player_teams.apply(get_most_common_team, axis=1) |
|
working_df['stack'] = [result[0] for result in stack_results] |
|
working_df['stack_size'] = [result[1] for result in stack_results] |
|
|
|
|
|
player_salaries = working_df[st.session_state['player_columns']].apply( |
|
lambda x: x.map(salary_map).fillna(0) |
|
) |
|
working_df['salary'] = player_salaries.sum(axis=1) |
|
|
|
|
|
player_fpts = working_df[st.session_state['player_columns']].apply( |
|
lambda x: x.map(actual_map).fillna(0) |
|
) |
|
working_df['actual_fpts'] = player_fpts.sum(axis=1) |
|
|
|
|
|
player_ownership = working_df[st.session_state['player_columns']].apply( |
|
lambda x: x.map(ownership_map).fillna(0) |
|
) |
|
working_df['actual_own'] = player_ownership.sum(axis=1) |
|
|
|
|
|
working_df['sorted'] = working_df[st.session_state['player_columns']].apply( |
|
lambda row: ','.join(sorted(row.values)), axis=1 |
|
) |
|
working_df['dupes'] = working_df.groupby(['actual_fpts', 'actual_own', 'salary']).transform('size') |
|
|
|
|
|
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x == 1).sum() |
|
) |
|
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x <= 5).sum() |
|
) |
|
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x <= 10).sum() |
|
) |
|
|
|
working_df = working_df.sort_values(by='actual_fpts', ascending=False) |
|
working_df = working_df.reset_index(drop=True) |
|
working_df = working_df.reset_index() |
|
working_df['percentile_finish'] = working_df['index'].rank(pct=True) |
|
working_df['finish'] = working_df['index'] |
|
working_df = working_df.drop(['sorted', 'index'], axis=1) |
|
try: |
|
|
|
working_df['payout'] = 0 |
|
|
|
|
|
for fpts, group in working_df.groupby('actual_fpts'): |
|
|
|
first_row = group.iloc[0] |
|
finish_pos = first_row['finish'] |
|
dupes_count = first_row['dupes'] |
|
|
|
if dupes_count == 1: |
|
|
|
payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], 1) |
|
else: |
|
|
|
split_payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], dupes_count) |
|
payout = split_payout |
|
|
|
|
|
working_df.loc[group.index, 'payout'] = payout |
|
except: |
|
pass |
|
|
|
elif st.session_state['type_init'] == 'Showdown': |
|
|
|
player_teams = working_df.iloc[:, 2:].apply( |
|
lambda x: x.map(team_map).fillna('') |
|
) |
|
|
|
|
|
def get_most_common_team(teams): |
|
if teams.empty or teams.isna().all(): |
|
return '', 0 |
|
non_empty_teams = teams[teams != ''] |
|
if len(non_empty_teams) == 0: |
|
return '', 0 |
|
team_counts = non_empty_teams.value_counts() |
|
return team_counts.index[0], team_counts.iloc[0] |
|
|
|
stack_results = player_teams.apply(get_most_common_team, axis=1) |
|
working_df['stack'] = [result[0] for result in stack_results] |
|
working_df['stack_size'] = [result[1] for result in stack_results] |
|
|
|
if st.session_state['sport_init'] == 'GOLF': |
|
|
|
player_salaries = working_df.apply( |
|
lambda x: x.map(salary_map).fillna(0) |
|
) |
|
working_df['salary'] = player_salaries.sum(axis=1) |
|
|
|
player_fpts = working_df.apply( |
|
lambda x: x.map(actual_map).fillna(0) |
|
) |
|
working_df['actual_fpts'] = player_fpts.sum(axis=1) |
|
else: |
|
|
|
first_player_salary = working_df.iloc[:, 2].map(salary_map).fillna(0) * 1.5 |
|
other_players_salary = working_df.iloc[:, 3:].apply( |
|
lambda x: x.map(salary_map).fillna(0) |
|
).sum(axis=1) |
|
working_df['salary'] = first_player_salary + other_players_salary |
|
|
|
first_player_fpts = working_df.iloc[:, 2].map(actual_map).fillna(0) * 1.5 |
|
other_players_fpts = working_df.iloc[:, 3:].apply( |
|
lambda x: x.map(actual_map).fillna(0) |
|
).sum(axis=1) |
|
working_df['actual_fpts'] = first_player_fpts + other_players_fpts |
|
|
|
|
|
player_ownership = working_df.apply( |
|
lambda x: x.map(ownership_map).fillna(0) |
|
) |
|
working_df['actual_own'] = player_ownership.sum(axis=1) |
|
|
|
|
|
working_df['sorted'] = working_df[st.session_state['player_columns']].apply( |
|
lambda row: ','.join(sorted(row.values)), axis=1 |
|
) |
|
working_df['dupes'] = working_df.groupby(['actual_fpts', 'actual_own', 'salary']).transform('size') |
|
|
|
|
|
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x == 1).sum() |
|
) |
|
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x <= 5).sum() |
|
) |
|
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform( |
|
lambda x: (x <= 10).sum() |
|
) |
|
|
|
working_df = working_df.sort_values(by='actual_fpts', ascending=False) |
|
working_df = working_df.reset_index(drop=True) |
|
working_df = working_df.reset_index() |
|
working_df['percentile_finish'] = working_df['index'].rank(pct=True) |
|
working_df['finish'] = working_df['index'] |
|
working_df = working_df.drop(['sorted', 'index'], axis=1) |
|
try: |
|
|
|
working_df['payout'] = 0 |
|
|
|
|
|
for fpts, group in working_df.groupby('actual_fpts'): |
|
|
|
first_row = group.iloc[0] |
|
finish_pos = first_row['finish'] |
|
dupes_count = first_row['dupes'] |
|
|
|
if dupes_count == 1: |
|
|
|
payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], 1) |
|
else: |
|
|
|
split_payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], dupes_count) |
|
payout = split_payout |
|
|
|
|
|
working_df.loc[group.index, 'payout'] = payout |
|
except: |
|
pass |
|
|
|
|
|
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns']) |
|
st.session_state['field_stack_frame'] = create_stack_exposures(working_df) |
|
st.session_state['display_contest_info'] = working_df.copy() |
|
st.session_state['contest_info_reset'] = working_df.copy() |
|
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K')) |
|
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] |
|
|
|
st.write('Contest data:') |
|
st.dataframe(st.session_state['Contest'].head(25)) |
|
if st.session_state['portfolio_df'] is not None: |
|
st.write('Portfolio data:') |
|
st.dataframe(st.session_state['portfolio_df'].head(25)) |
|
else: |
|
pass |
|
|
|
if selected_tab == 'Contest Analysis': |
|
if 'sport_select' not in st.session_state: |
|
st.session_state['sport_select'] = st.session_state['sport_init'] |
|
|
|
if 'display_contest_info' in st.session_state: |
|
with st.expander("Info and filters"): |
|
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'") |
|
clear_col, reset_col, blank_col = st.columns([1, 1, 7]) |
|
with clear_col: |
|
if st.button('Clear data', key='reset3'): |
|
st.session_state.clear() |
|
with reset_col: |
|
if st.button('Reset filters', key='reset4'): |
|
st.session_state['entry_parse_var'] = 'All' |
|
st.session_state['entry_names'] = [] |
|
st.session_state['low_entries_var'] = 1 |
|
st.session_state['high_entries_var'] = 150 |
|
st.session_state['stack_parse_var'] = 'All' |
|
st.session_state['stack_names'] = [] |
|
st.session_state['stack_size_parse_var'] = 'All' |
|
st.session_state['stack_size_names'] = [] |
|
st.session_state['player_parse_var'] = 'All' |
|
st.session_state['player_names'] = [] |
|
st.session_state['remove_var'] = 'No' |
|
st.session_state['remove_names'] = [] |
|
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy() |
|
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K')) |
|
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] |
|
for keys in ['player_frame', 'stack_frame', 'stack_size_frame', 'general_frame', 'duplication_frame', 'player_exp_comp_download', 'stack_exp_comp_download', 'size_exp_comp_download', 'general_exp_comp_download', 'dupe_exp_comp_download']: |
|
if keys in st.session_state: |
|
del st.session_state[keys] |
|
|
|
with st.form(key='filter_form'): |
|
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6) |
|
with users_var: |
|
st.session_state['entry_parse_var'] = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific']) |
|
st.session_state['entry_names'] = st.multiselect("Select players", options=st.session_state['entry_list'], default=[]) |
|
with entries_var: |
|
st.session_state['low_entries_var'] = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1) |
|
st.session_state['high_entries_var'] = st.number_input("High end of entries range", min_value=0, max_value=150, value=150) |
|
with stack_var: |
|
st.session_state['stack_parse_var'] = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific']) |
|
st.session_state['stack_names'] = st.multiselect("Select teams", options=st.session_state['display_contest_info']['stack'].unique(), default=[]) |
|
with stack_size_var: |
|
st.session_state['stack_size_parse_var'] = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific']) |
|
st.session_state['stack_size_names'] = st.multiselect("Select stack sizes", options=st.session_state['display_contest_info']['stack_size'].unique(), default=[]) |
|
with player_var: |
|
st.session_state['player_parse_var'] = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific']) |
|
st.session_state['player_names'] = st.multiselect("Select players to lock", options=st.session_state['unique_players'], default=[]) |
|
with remove_var: |
|
st.session_state['remove_var'] = st.selectbox("Do you want to remove a specific player(s)?", ['No', 'Yes']) |
|
st.session_state['remove_names'] = st.multiselect("Select players to remove", options=st.session_state['unique_players'], default=[]) |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if 'player_frame' in st.session_state: |
|
del st.session_state['player_frame'] |
|
if 'stack_frame' in st.session_state: |
|
del st.session_state['stack_frame'] |
|
if 'stack_size_frame' in st.session_state: |
|
del st.session_state['stack_size_frame'] |
|
if 'general_frame' in st.session_state: |
|
del st.session_state['general_frame'] |
|
if 'duplication_frame' in st.session_state: |
|
del st.session_state['duplication_frame'] |
|
if 'ROI_frame' in st.session_state: |
|
del st.session_state['ROI_frame'] |
|
|
|
if st.session_state['entry_parse_var'] == 'Specific' and st.session_state['entry_names']: |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'].isin(st.session_state['entry_names'])] |
|
if st.session_state['stack_parse_var'] == 'Specific' and st.session_state['stack_names']: |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack'].isin(st.session_state['stack_names'])] |
|
if st.session_state['stack_size_parse_var'] == 'Specific' and st.session_state['stack_size_names']: |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack_size'].isin(st.session_state['stack_size_names'])] |
|
if st.session_state['player_parse_var'] == 'Specific' and st.session_state['player_names']: |
|
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: all(player in row.values for player in st.session_state['player_names']), axis=1) |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][mask] |
|
if st.session_state['remove_var'] == 'Yes' and st.session_state['remove_names']: |
|
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: any(player in row.values for player in st.session_state['remove_names']), axis=1) |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][~mask] |
|
if st.session_state['low_entries_var'] and st.session_state['high_entries_var']: |
|
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['EntryCount'].between(st.session_state['low_entries_var'], st.session_state['high_entries_var'])] |
|
|
|
if 'display_contest_info' in st.session_state: |
|
|
|
if 'current_page' not in st.session_state: |
|
st.session_state.current_page = 1 |
|
|
|
|
|
rows_per_page = 500 |
|
total_rows = len(st.session_state['display_contest_info']) |
|
total_pages = (total_rows + rows_per_page - 1) // rows_per_page |
|
|
|
|
|
pagination_cols = st.columns([4, 1, 1, 1, 4]) |
|
with pagination_cols[1]: |
|
if st.button(f"Previous Page"): |
|
if st.session_state['current_page'] > 1: |
|
st.session_state.current_page -= 1 |
|
else: |
|
st.session_state.current_page = 1 |
|
if 'player_frame' in st.session_state: |
|
del st.session_state['player_frame'] |
|
if 'stack_frame' in st.session_state: |
|
del st.session_state['stack_frame'] |
|
|
|
with pagination_cols[3]: |
|
if st.button(f"Next Page"): |
|
st.session_state.current_page += 1 |
|
if 'player_frame' in st.session_state: |
|
del st.session_state['player_frame'] |
|
if 'stack_frame' in st.session_state: |
|
del st.session_state['stack_frame'] |
|
|
|
|
|
start_idx = (st.session_state.current_page - 1) * rows_per_page |
|
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows) |
|
st.dataframe( |
|
st.session_state['display_contest_info'].iloc[start_idx:end_idx].style |
|
.apply(highlight_row_condition, axis=1) |
|
.background_gradient(axis=0) |
|
.background_gradient(cmap='RdYlGn') |
|
.format(precision=2), |
|
height=500, |
|
use_container_width=True, |
|
hide_index=True |
|
) |
|
else: |
|
st.stop() |
|
st.download_button(label="Download Contest Info", data=st.session_state['display_contest_info'].to_csv(index=False), file_name="contest_info.csv", mime="text/csv", key='download_contest') |
|
if 'Contest' in st.session_state: |
|
with st.container(): |
|
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info', 'ROI Info']) |
|
with tab1: |
|
player_pos_form_col, player_comp_form_col = st.columns(2) |
|
with player_pos_form_col: |
|
with st.form(key='player_info_pos_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var') |
|
with col2: |
|
if st.session_state['sport_select'] == 'NFL': |
|
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'MLB': |
|
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'NBA': |
|
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'WNBA': |
|
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'NHL': |
|
pos_select = st.multiselect("Select your position(s)", ['W', 'C', 'D', 'G'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'MMA': |
|
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'GOLF': |
|
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'NAS': |
|
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select') |
|
elif st.session_state['sport_select'] == 'CFB': |
|
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR'], key='pos_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if pos_var == 'Specific': |
|
pos_select = pos_select |
|
else: |
|
pos_select = None |
|
with player_comp_form_col: |
|
with st.form(key='player_exp_comp_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
comp_player_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_player_var') |
|
with col2: |
|
comp_player_select = st.multiselect("Select players to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_player_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if comp_player_var == 'No': |
|
comp_player_select = None |
|
else: |
|
comp_player_select = comp_player_select |
|
if comp_player_var == 'Yes': |
|
player_exp_comp = create_player_comparison(st.session_state['display_contest_info'], st.session_state['player_columns'], comp_player_select) |
|
hold_frame = player_exp_comp.copy() |
|
if st.session_state['sport_select'] == 'GOLF': |
|
hold_frame['Pos'] = 'G' |
|
elif st.session_state['sport_select'] == 'NAS': |
|
hold_frame['Pos'] = 'C' |
|
else: |
|
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map']) |
|
player_exp_comp.insert(1, 'Pos', hold_frame['Pos']) |
|
player_exp_comp = player_exp_comp.dropna(subset=['Pos']) |
|
if pos_select: |
|
position_mask = player_exp_comp['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) |
|
player_exp_comp = player_exp_comp[position_mask] |
|
st.dataframe(player_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=player_exp_comp.select_dtypes(include=['number']).columns), hide_index=True) |
|
st.download_button(label="Download Player Info", data=player_exp_comp.to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download') |
|
else: |
|
if st.session_state['entry_parse_var'] == 'All': |
|
|
|
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns']) |
|
hold_frame = st.session_state['player_frame'].copy() |
|
if st.session_state['sport_select'] == 'GOLF': |
|
hold_frame['Pos'] = 'G' |
|
elif st.session_state['sport_select'] == 'NAS': |
|
hold_frame['Pos'] = 'NAS' |
|
else: |
|
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map']) |
|
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) |
|
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) |
|
if pos_select: |
|
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) |
|
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] |
|
st.dataframe(st.session_state['player_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Player Info", data=st.session_state['player_frame'].to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download') |
|
else: |
|
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'], st.session_state['entry_names']) |
|
hold_frame = st.session_state['player_frame'].copy() |
|
if st.session_state['sport_select'] == 'GOLF': |
|
hold_frame['Pos'] = 'G' |
|
elif st.session_state['sport_select'] == 'NAS': |
|
hold_frame['Pos'] = 'NAS' |
|
else: |
|
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map']) |
|
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos']) |
|
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos']) |
|
if pos_select: |
|
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select)) |
|
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask] |
|
st.dataframe(st.session_state['player_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Player Info", data=st.session_state['player_frame'].to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download') |
|
with tab2: |
|
with st.form(key='stack_exp_comp_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
comp_stack_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_stack_var') |
|
with col2: |
|
comp_stack_select = st.multiselect("Select stacks to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_stack_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if comp_stack_var == 'No': |
|
comp_stack_select = None |
|
else: |
|
comp_stack_select = comp_stack_select |
|
if comp_stack_var == 'Yes': |
|
stack_exp_comp = create_stack_comparison(st.session_state['display_contest_info'], comp_stack_select) |
|
st.dataframe(stack_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=stack_exp_comp.select_dtypes(include=['number']).columns), hide_index=True) |
|
st.download_button(label="Download Stack Info", data=stack_exp_comp.to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download') |
|
else: |
|
if st.session_state['entry_parse_var'] == 'All': |
|
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info']) |
|
st.dataframe(st.session_state['stack_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Stack Info", data=st.session_state['stack_frame'].to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download') |
|
else: |
|
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) |
|
st.dataframe(st.session_state['stack_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Stack Info", data=st.session_state['stack_frame'].to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download') |
|
with tab3: |
|
with st.form(key='size_exp_comp_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
comp_size_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_size_var') |
|
with col2: |
|
comp_size_select = st.multiselect("Select sizes to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_size_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if comp_size_var == 'No': |
|
comp_size_select = None |
|
else: |
|
comp_size_select = comp_size_select |
|
if comp_size_var == 'Yes': |
|
size_exp_comp = create_size_comparison(st.session_state['display_contest_info'], comp_size_select) |
|
st.dataframe(size_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=size_exp_comp.select_dtypes(include=['number']).columns), hide_index=True) |
|
st.download_button(label="Download Stack Size Info", data=size_exp_comp.to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download') |
|
else: |
|
if st.session_state['entry_parse_var'] == 'All': |
|
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info']) |
|
st.dataframe(st.session_state['stack_size_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Stack Size Info", data=st.session_state['stack_size_frame'].to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download') |
|
else: |
|
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) |
|
|
|
st.dataframe(st.session_state['stack_size_frame']. |
|
sort_values(by='Exposure Overall', ascending=False). |
|
style.background_gradient(cmap='RdYlGn'). |
|
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns), |
|
hide_index=True) |
|
st.download_button(label="Download Stack Size Info", data=st.session_state['stack_size_frame'].to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download') |
|
with tab4: |
|
with st.form(key='general_comp_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
comp_general_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_general_var') |
|
with col2: |
|
comp_general_select = st.multiselect("Select generals to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_general_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if comp_general_var == 'No': |
|
comp_general_select = None |
|
else: |
|
comp_general_select = comp_general_select |
|
if comp_general_var == 'Yes': |
|
general_comp = create_general_comparison(st.session_state['display_contest_info'], comp_general_select) |
|
st.dataframe(general_comp.style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2)) |
|
st.download_button(label="Download General Info", data=general_comp.to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download') |
|
else: |
|
if st.session_state['entry_parse_var'] == 'All': |
|
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info']) |
|
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) |
|
st.download_button(label="Download General Info", data=st.session_state['general_frame'].to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download') |
|
else: |
|
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'], st.session_state['entry_names']) |
|
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True) |
|
st.download_button(label="Download General Info", data=st.session_state['general_frame'].to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download') |
|
|
|
with tab5: |
|
with st.form(key='dupe_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
user_dupe_var = st.selectbox("Which usage(s) would you like to view?", ['All', 'Specific'], key='user_dupe_var') |
|
with col2: |
|
user_dupe_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_dupe_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if user_dupe_var == 'Specific': |
|
user_dupe_select = user_dupe_select |
|
else: |
|
user_dupe_select = None |
|
if 'duplication_frame' not in st.session_state: |
|
dupe_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']] |
|
dupe_frame['average_dupes'] = dupe_frame['dupes'].mean() |
|
dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount'] |
|
dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount'] |
|
dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount'] |
|
dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first') |
|
st.session_state['duplication_frame'] = dupe_frame.sort_values(by='uniques%', ascending=False) |
|
if user_dupe_var == 'Specific': |
|
st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)] |
|
|
|
|
|
if 'dupe_page' not in st.session_state: |
|
st.session_state.dupe_page = 1 |
|
|
|
|
|
rows_per_page = 50 |
|
total_rows = len(st.session_state['duplication_frame']) |
|
total_pages = (total_rows + rows_per_page - 1) // rows_per_page |
|
|
|
|
|
pagination_cols = st.columns([4, 1, 1, 1, 4]) |
|
with pagination_cols[1]: |
|
if st.button(f"Previous Dupes Page"): |
|
if st.session_state['dupe_page'] > 1: |
|
st.session_state.dupe_page -= 1 |
|
|
|
with pagination_cols[3]: |
|
if st.button(f"Next Dupes Page"): |
|
st.session_state.dupe_page += 1 |
|
|
|
|
|
start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page |
|
end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows) |
|
|
|
st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style. |
|
background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0). |
|
background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0). |
|
format(dupe_format, precision=2), hide_index=True) |
|
st.download_button(label="Download Duplication Info", data=st.session_state['duplication_frame'].to_csv(index=False), file_name="duplication_info.csv", mime="text/csv", key='dupe_exp_comp_download') |
|
|
|
with tab6: |
|
if st.session_state['payout_info'] is not None: |
|
with st.form(key='ROI_form'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
user_ROI_var = st.selectbox("Which user(s) would you like to view?", ['All', 'Specific'], key='user_ROI_var') |
|
with col2: |
|
user_ROI_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_ROI_select') |
|
submitted = st.form_submit_button("Submit") |
|
if submitted: |
|
if user_ROI_var == 'Specific': |
|
user_ROI_select = user_ROI_select |
|
else: |
|
user_ROI_select = None |
|
if 'ROI_frame' not in st.session_state: |
|
roi_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'finish', 'payout']] |
|
roi_frame['Total Fees'] = roi_frame['EntryCount'] * st.session_state['entry_fee'] |
|
roi_frame['Total Payout'] = roi_frame.groupby('BaseName')['payout'].transform('sum') |
|
roi_frame['ROI'] = (roi_frame['Total Payout'] / roi_frame['Total Fees']) |
|
roi_frame = roi_frame[['BaseName', 'EntryCount', 'Total Fees', 'Total Payout', 'ROI']].drop_duplicates(subset='BaseName', keep='first') |
|
st.session_state['ROI_frame'] = roi_frame.sort_values(by='Total Payout', ascending=False) |
|
if user_ROI_var == 'Specific': |
|
st.session_state['ROI_frame'] = st.session_state['ROI_frame'][st.session_state['ROI_frame']['BaseName'].isin(user_ROI_select)] |
|
|
|
|
|
if 'ROI_page' not in st.session_state: |
|
st.session_state.ROI_page = 1 |
|
|
|
|
|
rows_per_page = 50 |
|
total_rows = len(st.session_state['ROI_frame']) |
|
total_pages = (total_rows + rows_per_page - 1) // rows_per_page |
|
|
|
|
|
pagination_cols = st.columns([4, 1, 1, 1, 4]) |
|
with pagination_cols[1]: |
|
if st.button(f"Previous ROI Page"): |
|
if st.session_state['ROI_page'] > 1: |
|
st.session_state.ROI_page -= 1 |
|
|
|
with pagination_cols[3]: |
|
if st.button(f"Next ROI Page"): |
|
st.session_state.ROI_page += 1 |
|
|
|
|
|
start_ROI_idx = (st.session_state.ROI_page - 1) * rows_per_page |
|
end_ROI_idx = min((st.session_state.ROI_page) * rows_per_page, total_rows) |
|
|
|
st.dataframe(st.session_state['ROI_frame'].iloc[start_ROI_idx:end_ROI_idx].style. |
|
applymap(color_roi, subset=['ROI']). |
|
background_gradient(cmap='RdYlGn', subset=['Total Fees', 'Total Payout'], axis=0). |
|
background_gradient(cmap='RdYlGn', subset=['EntryCount'], axis=0). |
|
format(roi_format, precision=2), hide_index=True) |
|
st.download_button(label="Download ROI Info", data=st.session_state['ROI_frame'].to_csv(index=False), file_name="ROI_info.csv", mime="text/csv", key='ROI_exp_comp_download') |
|
else: |
|
st.write('No ROI info available') |