File size: 63,386 Bytes
58cea02 91e473e d765ee8 0841c51 38d3f0b 0841c51 a4ba398 a707b59 0841c51 a707b59 910ce9f 0841c51 910ce9f 69590e2 e04a121 38d3f0b e04a121 0841c51 dc9501e 869c271 48da594 869c271 7365d98 629cb6e ceb4948 869c271 629cb6e 869c271 84af75a e533f8c 77d71e0 e533f8c 84af75a 1b1d1f9 e533f8c 1b1d1f9 e533f8c 39841d9 de7aa9f 591ec4f 35472d1 39841d9 de7aa9f 39841d9 591ec4f 39841d9 35472d1 39841d9 9e7f389 209a946 e533f8c 209a946 ccdf83a 209a946 ccdf83a 209a946 ccdf83a 209a946 e533f8c 7e6e154 0841c51 58cea02 f76b524 9c7e08b 45a70a9 1748ccd d18e5a9 8f424e5 0841c51 45351e3 c744629 c6bf99d 31a2d34 58cea02 4ad4038 a707b59 8e43993 99e552f 81ad445 8e43993 8261cfd 71c647d 7de18e9 71c647d 7829724 4127d38 d69a1b2 2ab6242 95ba261 7f07fe7 0c721eb 7f07fe7 c4642dd 7f07fe7 7829724 d69a1b2 7829724 237985f 7829724 c1c18f8 7829724 e04a121 7829724 8b08b1a a692d2e 1666aa7 0841c51 41768e4 a34bb65 0c721eb cac37db 1b1d1f9 cac37db a34bb65 71c647d 6a6220a a692d2e 41768e4 b5afac7 6a6220a 0c721eb 6a6220a cac37db 1b1d1f9 cac37db b5afac7 71c647d 22b5408 8ada274 81fc9e2 22b5408 ffe9696 22b5408 ffe9696 e22fb4e bca2538 e22fb4e ffe9696 2e01205 22b5408 928ec6e a692d2e 0c721eb a692d2e f051d8d 39841d9 f051d8d a11ceac 39841d9 0c721eb 35472d1 cff79f7 a11ceac cff79f7 68d3916 e7e2a49 5b9c82c 0c721eb 1854e4d c196cbc 3e52c68 2cd1df4 3597da4 448fa4e a4e3e2e 2cd1df4 1854e4d 28939d0 a4e3e2e 9f87d22 28939d0 448fa4e 2cd1df4 39e3915 448fa4e f65755c 448fa4e d765ee8 448fa4e d765ee8 448fa4e a4e3e2e 448fa4e 76d511e 7e42d3a 448fa4e 6d1503d 3eae767 6d1503d 16fbcab 6db62f0 f49d54b f56fa41 9887c91 31e306d 7ee8722 31e306d 7ee8722 31e306d 7ee8722 31e306d 9887c91 e533f8c f56fa41 f65755c 448fa4e f56fa41 d92d150 448fa4e f65755c 448fa4e 5370c50 448fa4e 5370c50 448fa4e a4e3e2e 448fa4e f56fa41 7e42d3a 448fa4e 3eae767 6d1503d f56fa41 16fbcab 9887c91 31e306d 7ee8722 31e306d 7ee8722 31e306d 7ee8722 31e306d 9887c91 e533f8c 448fa4e a4e3e2e 1817a5f a4e3e2e 1cbe27c 1599cba 448fa4e 0d01fa6 f051d8d 066ac05 0c721eb 149c996 0c721eb f344ebf 6e8cffc 886a898 e025a7c b27b8d0 c7440a1 1cbe27c c7440a1 448fa4e 294b6d5 886a898 6e8cffc 1599cba 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 544cf42 1599cba 544cf42 16aefb8 6e8cffc cf18cbb 8aaea01 a4e3e2e 1599cba 3eb2035 a4e3e2e 2e01205 3e52c68 6e8cffc a4e3e2e 6e8cffc a19edd8 6e8cffc a19edd8 6e8cffc a19edd8 9da8f46 a19edd8 857c2eb 6e8cffc a4e3e2e a707b59 6e8cffc 3e52c68 8c3816f e8a3351 6e8cffc 1b1d1f9 6e8cffc c9fd1e3 2ab6242 c9fd1e3 8261cfd c9fd1e3 8261cfd c9fd1e3 8261cfd c9fd1e3 8261cfd c9fd1e3 8261cfd c9fd1e3 8261cfd dc0d88b 27c2660 c9fd1e3 45351e3 00f9a6c c744629 8261cfd c744629 8261cfd 181beb3 c744629 c9fd1e3 4526102 6e8cffc 45351e3 df8ffd8 45351e3 8261cfd 45351e3 8261cfd 181beb3 45351e3 4526102 8e622a8 45351e3 8261cfd 45351e3 8261cfd 181beb3 45351e3 4526102 6e8cffc c744629 4526102 6e8cffc c744629 4526102 c744629 4526102 6e8cffc c6bf99d 4526102 6e8cffc c6bf99d 4526102 c6bf99d 3c22444 c6bf99d dc6fa4a c6bf99d 4526102 8f424e5 31a2d34 06c79a5 4526102 8f424e5 31a2d34 4526102 31a2d34 4526102 8f424e5 b36408f d415f18 a4e3e2e d415f18 fd1c071 31a2d34 d415f18 eabaa7d d415f18 eabaa7d d415f18 2ceda65 d415f18 219079c 1b1d1f9 749d0aa 420ea34 1b1d1f9 7e6e154 81ad445 1b1d1f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime
# Just setting a note here to say that I should attempt to do some memory allocation savings and swap to numpy soon
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client['Contest_Information']
return db
def grab_contest_names(db, sport, type):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'sd'
collection = db[f'{sport}_{db_type}_contest_info']
cursor = collection.find()
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date']
return contest_names, curr_info
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_player_info']
cursor = collection.find()
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
player_info = player_info[player_info['Contest Date'] == contest_date]
player_info = player_info.rename(columns={'Display Name': 'Player'})
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')
info_maps = {
'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
}
return player_info, info_maps
def grab_contest_payout_info(db, sport, type, contest_date, contest_name, contest_id_map, contest_id):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_payout_info']
cursor = collection.find()
payout_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
payout_info = payout_info[payout_info['Contest Date'] == contest_date]
payout_info = payout_info[payout_info['Contest ID'] == contest_id_map[contest_name]]
entry_fee = payout_info['Entry Fee'].iloc[0]
return payout_info, entry_fee
def export_contest_file(db, sport, type, contest_date, contest_id, contest_data):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_contest_data']
try:
cursor = collection.find()
contest_import = pd.DataFrame(list(cursor)).drop('_id', axis=1)
if contest_id in contest_import['Contest ID'].values:
return_message = "Data for this contest already exists, no need to upload, but we appreciate the effort!"
return return_message
except:
contest_import = pd.DataFrame(columns = ['Rank', 'EntryId', 'EntryName', 'TimeRemaining', 'Points', 'Lineup', 'Player', 'Roster Position', '%Drafted', 'FPTS', 'Contest Date', 'Contest ID'])
contest_data['Contest Date'] = contest_date
contest_data['Contest ID'] = contest_id
contest_import = pd.concat([contest_import, contest_data], ignore_index=True)
chunk_size = 10000
collection.drop()
for i in range(0, len(contest_import), chunk_size):
for _ in range(5):
try:
df_chunk = contest_import.iloc[i:i + chunk_size]
collection.insert_many(df_chunk.to_dict('records'), ordered=False)
break
except Exception as e:
print(f"Retry due to error: {e}")
return_message = "Contest data uploaded successfully! We appreciate the data!"
return return_message
def get_payout_for_position(finish_pos, payout_df, dupes_count):
"""
Calculate payout for a position, handling ties by splitting the combined payout.
Args:
finish_pos: The finish position (0-indexed)
payout_df: DataFrame with payout structure
dupes_count: Number of entries that are tied (from the 'dupes' column)
"""
if dupes_count == 1:
# Single position, no tie
matching_row = payout_df[
(payout_df['minPosition'] <= finish_pos + 1) &
(payout_df['maxPosition'] >= finish_pos + 1)
]
if not matching_row.empty:
return matching_row.iloc[0]['value']
else:
return 0
else:
# Handle tie - sum payouts for the range of positions and divide by number of ties
# Convert to 1-indexed positions for payout lookup
start_pos = finish_pos + 1 # 1-indexed start position
end_pos = finish_pos + dupes_count # 1-indexed end position
total_payout = 0
for pos in range(start_pos, end_pos + 1):
matching_row = payout_df[
(payout_df['minPosition'] <= pos) &
(payout_df['maxPosition'] >= pos)
]
if not matching_row.empty:
total_payout += matching_row.iloc[0]['value']
# Return the split payout
return total_payout / dupes_count
def color_roi(val):
"""Color ROI values: green if > 100%, red if < 100%"""
if pd.isna(val):
return ''
if val > 1.0: # Greater than 100%
return 'background-color: lightgreen'
elif val < 1.0: # Less than 100%
return 'background-color: lightcoral'
else: # Exactly 100%
return 'background-color: lightyellow'
db = init_conn()
## import global functions for usages
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data
from global_func.create_player_comparison import create_player_comparison
from global_func.create_stack_comparison import create_stack_comparison
from global_func.create_size_comparison import create_size_comparison
from global_func.create_general_comparison import create_general_comparison
def is_valid_input(file):
if isinstance(file, pd.DataFrame):
return not file.empty
else:
return file is not None # For Streamlit uploader objects
def highlight_row_condition(row):
if row['BaseName'] == 'Backtesting_upload':
return ['background-color: lightgreen'] * len(row)
else:
return [''] * len(row)
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'}
roi_format = {'ROI': '{:.2%}', 'Total Fees': '{:.2f}', 'Total Payout': '{:.2f}'}
st.markdown("""
<style>
/* Tab styling */
.stElementContainer [data-baseweb="button-group"] {
gap: 2.000rem;
padding: 4px;
}
.stElementContainer [kind="segmented_control"] {
height: 2.000rem;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 20px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stElementContainer [kind="segmented_controlActive"] {
height: 3.000rem;
background-color: #DAA520;
border: 3px solid #FFD700;
border-radius: 10px;
color: black;
}
.stElementContainer [kind="segmented_control"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
</style>""", unsafe_allow_html=True)
try:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Contest Analysis"],
selection_mode='single',
default='Data Load',
width='stretch',
label_visibility='collapsed',
key='tab_selector'
)
except:
selected_tab = st.segmented_control(
"Select Tab",
options=["Data Load", "Contest Analysis"],
selection_mode='single',
default='Data Load',
label_visibility='collapsed',
key='tab_selector'
)
if selected_tab == 'Data Load':
data_select, contest_upload, portfolio_upload = st.columns(3)
with data_select:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
sport_options, date_options = st.columns(2)
parse_type = 'Manual'
with sport_options:
sport_init = st.selectbox("Select Sport", ['NFL', 'MLB', 'MMA', 'GOLF', 'NBA', 'NHL', 'CFB', 'WNBA', 'NAS'], key='sport_init')
type_init = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_init')
try:
contest_names, curr_info = grab_contest_names(db, sport_init, type_init)
except:
st.error("No contests found for this sport and/or game type")
st.stop()
with date_options:
date_list = curr_info['Date'].sort_values(ascending=False).unique()
# date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
date_select = st.selectbox("Select Date", date_list, key='date_select')
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID']))
date_select = date_select.replace('-', '')
date_select2 = date_select2.replace('-', '')
contest_name_var = st.selectbox("Select Contest to load", name_parse)
if parse_type == 'DB Search':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
if st.button('Load Contest Data', key='load_contest_data'):
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map)
st.session_state['Contest_file'] = grab_contest_data(sport_init, contest_name_var, contest_id_map, date_select, date_select2)
try:
st.session_state['payout_info'], st.session_state['entry_fee'] = grab_contest_payout_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map, contest_id_map[contest_name_var])
except:
st.session_state['payout_info'] = None
else:
pass
with contest_upload:
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/, or you can initiate a download with this link: https://www.draftkings.com/contest/exportfullstandingscsv/{contest_id_map[contest_name_var]}")
if parse_type == 'Manual':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map)
try:
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
except:
st.warning('Please upload a Contest CSV')
try:
st.session_state['payout_info'], st.session_state['entry_fee'] = grab_contest_payout_info(db, sport_init, type_init, date_select, contest_name_var, contest_id_map, contest_id_map[contest_name_var])
except:
st.session_state['payout_info'] = None
else:
pass
with portfolio_upload:
st.info("If you have a portfolio of lineups, you can upload them here to see how they would have performed against the field")
if st.button('Clear portfolio', key='reset2'):
st.session_state['portfolio_df'] = None
del st.session_state['display_contest_info']
st.session_state['portfolio_file'] = st.file_uploader("Upload Portfolio File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
try:
st.session_state['portfolio_df'] = pd.read_csv(st.session_state['portfolio_file'])
original_columns = st.session_state['portfolio_df'].columns.tolist()
for col in original_columns:
st.session_state['portfolio_df'][col] = st.session_state['portfolio_df'][col].astype(str).str.replace(r'\s*\([^)]*\)', '', regex=True).str.strip()
st.session_state['portfolio_df']['BaseName'] = 'Backtesting_upload'
st.session_state['portfolio_df']['EntryCount'] = len(st.session_state['portfolio_df'])
st.session_state['portfolio_df'] = st.session_state['portfolio_df'][['BaseName', 'EntryCount'] + original_columns]
if 'display_contest_info' in st.session_state and st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'] == 'Backtesting_upload'].empty:
del st.session_state['display_contest_info']
else:
pass
except:
st.session_state['portfolio_df'] = None
if 'Contest_file' in st.session_state:
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_init, st.session_state['player_info'], sport_init, st.session_state['portfolio_df'])
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
if st.session_state['Contest'] is not None:
success_col, info_col, upload_col, message_col = st.columns([2, 3, 1, 2])
with success_col:
st.success('Contest file loaded, please wait for tables to load below before you switch tabs!')
with info_col:
st.warning("If you have confirmed that the data is correct, you can send the CSV to the database to enrich Paydirt's sources and help us create actionable tools and algorithms >>")
with upload_col:
if st.button('Send file to Database?', key='export_contest_file'):
return_message = export_contest_file(db, sport_init, type_init, date_select, contest_id_map[contest_name_var], st.session_state['Contest_file'])
with message_col:
try:
st.info(return_message)
except:
pass
if 'Contest_file' in st.session_state:
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
excluded_cols = ['BaseName', 'EntryCount']
exclude_stacks = ['BaseName', 'EntryCount', 'SP', 'SP1', 'SP2', 'P1', 'P2', 'RB1', 'RB2', 'DST', 'G']
if 'Contest' in st.session_state and 'display_contest_info' not in st.session_state:
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
st.session_state['stack_columns'] = [col for col in st.session_state['Contest'].columns if col not in exclude_stacks]
print(st.session_state['player_columns'])
# Vectorized string operations
for col in st.session_state['player_columns']:
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip()
# Create mapping dictionaries
st.session_state['map_dict'] = {
'pos_map': st.session_state['pos_dict'],
'team_map': st.session_state['team_dict'],
'salary_map': st.session_state['salary_dict'],
'own_map': st.session_state['ownership_dict'],
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
}
working_df = st.session_state['Contest'].copy()
# Pre-compute lookup arrays for vectorized operations
team_map = st.session_state['map_dict']['team_map']
salary_map = st.session_state['salary_dict']
actual_map = st.session_state['actual_dict']
ownership_map = st.session_state['ownership_dict']
if st.session_state['type_init'] == 'Classic':
# Vectorized stack calculation
player_teams = working_df[st.session_state['stack_columns']].apply(
lambda x: x.map(team_map).fillna('')
)
# Vectorized stack and stack_size calculation
def get_most_common_team(teams):
if teams.empty or teams.isna().all():
return '', 0
non_empty_teams = teams[teams != '']
if len(non_empty_teams) == 0:
return '', 0
team_counts = non_empty_teams.value_counts()
return team_counts.index[0], team_counts.iloc[0]
stack_results = player_teams.apply(get_most_common_team, axis=1)
working_df['stack'] = [result[0] for result in stack_results]
working_df['stack_size'] = [result[1] for result in stack_results]
# Vectorized salary calculation
player_salaries = working_df[st.session_state['player_columns']].apply(
lambda x: x.map(salary_map).fillna(0)
)
working_df['salary'] = player_salaries.sum(axis=1)
# Vectorized actual_fpts calculation
player_fpts = working_df[st.session_state['player_columns']].apply(
lambda x: x.map(actual_map).fillna(0)
)
working_df['actual_fpts'] = player_fpts.sum(axis=1)
# Vectorized actual_own calculation
player_ownership = working_df[st.session_state['player_columns']].apply(
lambda x: x.map(ownership_map).fillna(0)
)
working_df['actual_own'] = player_ownership.sum(axis=1)
# Vectorized duplication calculation
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)), axis=1
)
working_df['dupes'] = working_df.groupby(['actual_fpts', 'actual_own', 'salary']).transform('size')
# Vectorized unique calculations
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x == 1).sum()
)
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x <= 5).sum()
)
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x <= 10).sum()
)
working_df = working_df.sort_values(by='actual_fpts', ascending=False)
working_df = working_df.reset_index(drop=True)
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
try:
# Calculate payouts efficiently by processing each unique fantasy points group
working_df['payout'] = 0 # Initialize payout column
# Group by actual_fpts since tied entries will have the same fantasy points
for fpts, group in working_df.groupby('actual_fpts'):
# Get the first row's finish position and dupes count
first_row = group.iloc[0]
finish_pos = first_row['finish']
dupes_count = first_row['dupes']
if dupes_count == 1:
# Single entry - no tie
payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], 1)
else:
# Multiple entries tied - calculate split payout once
split_payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], dupes_count)
payout = split_payout
# Apply the same payout to all rows in this group
working_df.loc[group.index, 'payout'] = payout
except:
pass
elif st.session_state['type_init'] == 'Showdown':
# Vectorized stack calculation for Showdown
player_teams = working_df.iloc[:, 2:].apply(
lambda x: x.map(team_map).fillna('')
)
# Vectorized stack and stack_size calculation
def get_most_common_team(teams):
if teams.empty or teams.isna().all():
return '', 0
non_empty_teams = teams[teams != '']
if len(non_empty_teams) == 0:
return '', 0
team_counts = non_empty_teams.value_counts()
return team_counts.index[0], team_counts.iloc[0]
stack_results = player_teams.apply(get_most_common_team, axis=1)
working_df['stack'] = [result[0] for result in stack_results]
working_df['stack_size'] = [result[1] for result in stack_results]
if st.session_state['sport_init'] == 'GOLF':
# Vectorized calculations for GOLF
player_salaries = working_df.apply(
lambda x: x.map(salary_map).fillna(0)
)
working_df['salary'] = player_salaries.sum(axis=1)
player_fpts = working_df.apply(
lambda x: x.map(actual_map).fillna(0)
)
working_df['actual_fpts'] = player_fpts.sum(axis=1)
else:
# Vectorized calculations with 1.5x multiplier for first player
first_player_salary = working_df.iloc[:, 2].map(salary_map).fillna(0) * 1.5
other_players_salary = working_df.iloc[:, 3:].apply(
lambda x: x.map(salary_map).fillna(0)
).sum(axis=1)
working_df['salary'] = first_player_salary + other_players_salary
first_player_fpts = working_df.iloc[:, 2].map(actual_map).fillna(0) * 1.5
other_players_fpts = working_df.iloc[:, 3:].apply(
lambda x: x.map(actual_map).fillna(0)
).sum(axis=1)
working_df['actual_fpts'] = first_player_fpts + other_players_fpts
# Vectorized actual_own calculation
player_ownership = working_df.apply(
lambda x: x.map(ownership_map).fillna(0)
)
working_df['actual_own'] = player_ownership.sum(axis=1)
# Vectorized duplication calculation
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)), axis=1
)
working_df['dupes'] = working_df.groupby(['actual_fpts', 'actual_own', 'salary']).transform('size')
# Vectorized unique calculations
working_df['uniques'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x == 1).sum()
)
working_df['under_5'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x <= 5).sum()
)
working_df['under_10'] = working_df.groupby('BaseName')['dupes'].transform(
lambda x: (x <= 10).sum()
)
working_df = working_df.sort_values(by='actual_fpts', ascending=False)
working_df = working_df.reset_index(drop=True)
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
try:
# Calculate payouts efficiently by processing each unique fantasy points group
working_df['payout'] = 0 # Initialize payout column
# Group by actual_fpts since tied entries will have the same fantasy points
for fpts, group in working_df.groupby('actual_fpts'):
# Get the first row's finish position and dupes count
first_row = group.iloc[0]
finish_pos = first_row['finish']
dupes_count = first_row['dupes']
if dupes_count == 1:
# Single entry - no tie
payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], 1)
else:
# Multiple entries tied - calculate split payout once
split_payout = get_payout_for_position(finish_pos, st.session_state['payout_info'], dupes_count)
payout = split_payout
# Apply the same payout to all rows in this group
working_df.loc[group.index, 'payout'] = payout
except:
pass
# Store results
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns'])
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
st.session_state['display_contest_info'] = working_df.copy()
st.session_state['contest_info_reset'] = working_df.copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
st.write('Contest data:')
st.dataframe(st.session_state['Contest'].head(25))
if st.session_state['portfolio_df'] is not None:
st.write('Portfolio data:')
st.dataframe(st.session_state['portfolio_df'].head(25))
else:
pass
if selected_tab == 'Contest Analysis':
if 'sport_select' not in st.session_state:
st.session_state['sport_select'] = st.session_state['sport_init']
if 'display_contest_info' in st.session_state:
with st.expander("Info and filters"):
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'")
clear_col, reset_col, blank_col = st.columns([1, 1, 7])
with clear_col:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with reset_col:
if st.button('Reset filters', key='reset4'):
st.session_state['entry_parse_var'] = 'All'
st.session_state['entry_names'] = []
st.session_state['low_entries_var'] = 1
st.session_state['high_entries_var'] = 150
st.session_state['stack_parse_var'] = 'All'
st.session_state['stack_names'] = []
st.session_state['stack_size_parse_var'] = 'All'
st.session_state['stack_size_names'] = []
st.session_state['player_parse_var'] = 'All'
st.session_state['player_names'] = []
st.session_state['remove_var'] = 'No'
st.session_state['remove_names'] = []
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan']
for keys in ['player_frame', 'stack_frame', 'stack_size_frame', 'general_frame', 'duplication_frame', 'player_exp_comp_download', 'stack_exp_comp_download', 'size_exp_comp_download', 'general_exp_comp_download', 'dupe_exp_comp_download']:
if keys in st.session_state:
del st.session_state[keys]
with st.form(key='filter_form'):
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6)
with users_var:
st.session_state['entry_parse_var'] = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific'])
st.session_state['entry_names'] = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
with entries_var:
st.session_state['low_entries_var'] = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1)
st.session_state['high_entries_var'] = st.number_input("High end of entries range", min_value=0, max_value=150, value=150)
with stack_var:
st.session_state['stack_parse_var'] = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific'])
st.session_state['stack_names'] = st.multiselect("Select teams", options=st.session_state['display_contest_info']['stack'].unique(), default=[])
with stack_size_var:
st.session_state['stack_size_parse_var'] = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific'])
st.session_state['stack_size_names'] = st.multiselect("Select stack sizes", options=st.session_state['display_contest_info']['stack_size'].unique(), default=[])
with player_var:
st.session_state['player_parse_var'] = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific'])
st.session_state['player_names'] = st.multiselect("Select players to lock", options=st.session_state['unique_players'], default=[])
with remove_var:
st.session_state['remove_var'] = st.selectbox("Do you want to remove a specific player(s)?", ['No', 'Yes'])
st.session_state['remove_names'] = st.multiselect("Select players to remove", options=st.session_state['unique_players'], default=[])
submitted = st.form_submit_button("Submit")
if submitted:
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
if 'stack_size_frame' in st.session_state:
del st.session_state['stack_size_frame']
if 'general_frame' in st.session_state:
del st.session_state['general_frame']
if 'duplication_frame' in st.session_state:
del st.session_state['duplication_frame']
if 'ROI_frame' in st.session_state:
del st.session_state['ROI_frame']
if st.session_state['entry_parse_var'] == 'Specific' and st.session_state['entry_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'].isin(st.session_state['entry_names'])]
if st.session_state['stack_parse_var'] == 'Specific' and st.session_state['stack_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack'].isin(st.session_state['stack_names'])]
if st.session_state['stack_size_parse_var'] == 'Specific' and st.session_state['stack_size_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack_size'].isin(st.session_state['stack_size_names'])]
if st.session_state['player_parse_var'] == 'Specific' and st.session_state['player_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: all(player in row.values for player in st.session_state['player_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][mask]
if st.session_state['remove_var'] == 'Yes' and st.session_state['remove_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: any(player in row.values for player in st.session_state['remove_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][~mask]
if st.session_state['low_entries_var'] and st.session_state['high_entries_var']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['EntryCount'].between(st.session_state['low_entries_var'], st.session_state['high_entries_var'])]
if 'display_contest_info' in st.session_state:
# Initialize pagination in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Calculate total pages
rows_per_page = 500
total_rows = len(st.session_state['display_contest_info'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Page"):
if st.session_state['current_page'] > 1:
st.session_state.current_page -= 1
else:
st.session_state.current_page = 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
with pagination_cols[3]:
if st.button(f"Next Page"):
st.session_state.current_page += 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
st.dataframe(
st.session_state['display_contest_info'].iloc[start_idx:end_idx].style
.apply(highlight_row_condition, axis=1)
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=500,
use_container_width=True,
hide_index=True
)
else:
st.stop()
st.download_button(label="Download Contest Info", data=st.session_state['display_contest_info'].to_csv(index=False), file_name="contest_info.csv", mime="text/csv", key='download_contest')
if 'Contest' in st.session_state:
with st.container():
tab1, tab2, tab3, tab4, tab5, tab6 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info', 'ROI Info'])
with tab1:
player_pos_form_col, player_comp_form_col = st.columns(2)
with player_pos_form_col:
with st.form(key='player_info_pos_form'):
col1, col2 = st.columns(2)
with col1:
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var')
with col2:
if st.session_state['sport_select'] == 'NFL':
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_select')
elif st.session_state['sport_select'] == 'MLB':
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
elif st.session_state['sport_select'] == 'NBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_select')
elif st.session_state['sport_select'] == 'WNBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF'], key='pos_select')
elif st.session_state['sport_select'] == 'NHL':
pos_select = st.multiselect("Select your position(s)", ['W', 'C', 'D', 'G'], key='pos_select')
elif st.session_state['sport_select'] == 'MMA':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif st.session_state['sport_select'] == 'GOLF':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif st.session_state['sport_select'] == 'NAS':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif st.session_state['sport_select'] == 'CFB':
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR'], key='pos_select')
submitted = st.form_submit_button("Submit")
if submitted:
if pos_var == 'Specific':
pos_select = pos_select
else:
pos_select = None
with player_comp_form_col:
with st.form(key='player_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_player_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_player_var')
with col2:
comp_player_select = st.multiselect("Select players to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_player_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_player_var == 'No':
comp_player_select = None
else:
comp_player_select = comp_player_select
if comp_player_var == 'Yes':
player_exp_comp = create_player_comparison(st.session_state['display_contest_info'], st.session_state['player_columns'], comp_player_select)
hold_frame = player_exp_comp.copy()
if st.session_state['sport_select'] == 'GOLF':
hold_frame['Pos'] = 'G'
elif st.session_state['sport_select'] == 'NAS':
hold_frame['Pos'] = 'C'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
player_exp_comp.insert(1, 'Pos', hold_frame['Pos'])
player_exp_comp = player_exp_comp.dropna(subset=['Pos'])
if pos_select:
position_mask = player_exp_comp['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
player_exp_comp = player_exp_comp[position_mask]
st.dataframe(player_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=player_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
st.download_button(label="Download Player Info", data=player_exp_comp.to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download')
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'])
hold_frame = st.session_state['player_frame'].copy()
if st.session_state['sport_select'] == 'GOLF':
hold_frame['Pos'] = 'G'
elif st.session_state['sport_select'] == 'NAS':
hold_frame['Pos'] = 'NAS'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Player Info", data=st.session_state['player_frame'].to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download')
else:
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'], st.session_state['entry_names'])
hold_frame = st.session_state['player_frame'].copy()
if st.session_state['sport_select'] == 'GOLF':
hold_frame['Pos'] = 'G'
elif st.session_state['sport_select'] == 'NAS':
hold_frame['Pos'] = 'NAS'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Player Info", data=st.session_state['player_frame'].to_csv(index=False), file_name="player_info.csv", mime="text/csv", key='player_exp_comp_download')
with tab2:
with st.form(key='stack_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_stack_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_stack_var')
with col2:
comp_stack_select = st.multiselect("Select stacks to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_stack_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_stack_var == 'No':
comp_stack_select = None
else:
comp_stack_select = comp_stack_select
if comp_stack_var == 'Yes':
stack_exp_comp = create_stack_comparison(st.session_state['display_contest_info'], comp_stack_select)
st.dataframe(stack_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=stack_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
st.download_button(label="Download Stack Info", data=stack_exp_comp.to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download')
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Stack Info", data=st.session_state['stack_frame'].to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download')
else:
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Stack Info", data=st.session_state['stack_frame'].to_csv(index=False), file_name="stack_info.csv", mime="text/csv", key='stack_exp_comp_download')
with tab3:
with st.form(key='size_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_size_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_size_var')
with col2:
comp_size_select = st.multiselect("Select sizes to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_size_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_size_var == 'No':
comp_size_select = None
else:
comp_size_select = comp_size_select
if comp_size_var == 'Yes':
size_exp_comp = create_size_comparison(st.session_state['display_contest_info'], comp_size_select)
st.dataframe(size_exp_comp.style.background_gradient(cmap='RdYlGn', axis=0).format(formatter='{:.2%}', subset=size_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
st.download_button(label="Download Stack Size Info", data=size_exp_comp.to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download')
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Stack Size Info", data=st.session_state['stack_size_frame'].to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download')
else:
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
# st.session_state['stack_size_frame']['Player'] = st.session_state['stack_size_frame']['Player'].astype(str)
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
st.download_button(label="Download Stack Size Info", data=st.session_state['stack_size_frame'].to_csv(index=False), file_name="stack_size_info.csv", mime="text/csv", key='size_exp_comp_download')
with tab4:
with st.form(key='general_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_general_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_general_var')
with col2:
comp_general_select = st.multiselect("Select generals to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_general_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_general_var == 'No':
comp_general_select = None
else:
comp_general_select = comp_general_select
if comp_general_var == 'Yes':
general_comp = create_general_comparison(st.session_state['display_contest_info'], comp_general_select)
st.dataframe(general_comp.style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2))
st.download_button(label="Download General Info", data=general_comp.to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download')
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
st.download_button(label="Download General Info", data=st.session_state['general_frame'].to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download')
else:
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
st.download_button(label="Download General Info", data=st.session_state['general_frame'].to_csv(index=False), file_name="general_info.csv", mime="text/csv", key='general_exp_comp_download')
with tab5:
with st.form(key='dupe_form'):
col1, col2 = st.columns(2)
with col1:
user_dupe_var = st.selectbox("Which usage(s) would you like to view?", ['All', 'Specific'], key='user_dupe_var')
with col2:
user_dupe_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_dupe_select')
submitted = st.form_submit_button("Submit")
if submitted:
if user_dupe_var == 'Specific':
user_dupe_select = user_dupe_select
else:
user_dupe_select = None
if 'duplication_frame' not in st.session_state:
dupe_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
dupe_frame['average_dupes'] = dupe_frame['dupes'].mean()
dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount']
dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount']
dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount']
dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first')
st.session_state['duplication_frame'] = dupe_frame.sort_values(by='uniques%', ascending=False)
if user_dupe_var == 'Specific':
st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)]
# Initialize pagination in session state if not exists
if 'dupe_page' not in st.session_state:
st.session_state.dupe_page = 1
# Calculate total pages
rows_per_page = 50
total_rows = len(st.session_state['duplication_frame'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Dupes Page"):
if st.session_state['dupe_page'] > 1:
st.session_state.dupe_page -= 1
with pagination_cols[3]:
if st.button(f"Next Dupes Page"):
st.session_state.dupe_page += 1
# Calculate start and end indices for current page
start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page
end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows)
st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style.
background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0).
background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0).
format(dupe_format, precision=2), hide_index=True)
st.download_button(label="Download Duplication Info", data=st.session_state['duplication_frame'].to_csv(index=False), file_name="duplication_info.csv", mime="text/csv", key='dupe_exp_comp_download')
with tab6:
if st.session_state['payout_info'] is not None:
with st.form(key='ROI_form'):
col1, col2 = st.columns(2)
with col1:
user_ROI_var = st.selectbox("Which user(s) would you like to view?", ['All', 'Specific'], key='user_ROI_var')
with col2:
user_ROI_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_ROI_select')
submitted = st.form_submit_button("Submit")
if submitted:
if user_ROI_var == 'Specific':
user_ROI_select = user_ROI_select
else:
user_ROI_select = None
if 'ROI_frame' not in st.session_state:
roi_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'finish', 'payout']]
roi_frame['Total Fees'] = roi_frame['EntryCount'] * st.session_state['entry_fee']
roi_frame['Total Payout'] = roi_frame.groupby('BaseName')['payout'].transform('sum')
roi_frame['ROI'] = (roi_frame['Total Payout'] / roi_frame['Total Fees'])
roi_frame = roi_frame[['BaseName', 'EntryCount', 'Total Fees', 'Total Payout', 'ROI']].drop_duplicates(subset='BaseName', keep='first')
st.session_state['ROI_frame'] = roi_frame.sort_values(by='Total Payout', ascending=False)
if user_ROI_var == 'Specific':
st.session_state['ROI_frame'] = st.session_state['ROI_frame'][st.session_state['ROI_frame']['BaseName'].isin(user_ROI_select)]
# Initialize pagination in session state if not exists
if 'ROI_page' not in st.session_state:
st.session_state.ROI_page = 1
# Calculate total pages
rows_per_page = 50
total_rows = len(st.session_state['ROI_frame'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous ROI Page"):
if st.session_state['ROI_page'] > 1:
st.session_state.ROI_page -= 1
with pagination_cols[3]:
if st.button(f"Next ROI Page"):
st.session_state.ROI_page += 1
# Calculate start and end indices for current page
start_ROI_idx = (st.session_state.ROI_page - 1) * rows_per_page
end_ROI_idx = min((st.session_state.ROI_page) * rows_per_page, total_rows)
st.dataframe(st.session_state['ROI_frame'].iloc[start_ROI_idx:end_ROI_idx].style.
applymap(color_roi, subset=['ROI']).
background_gradient(cmap='RdYlGn', subset=['Total Fees', 'Total Payout'], axis=0).
background_gradient(cmap='RdYlGn', subset=['EntryCount'], axis=0).
format(roi_format, precision=2), hide_index=True)
st.download_button(label="Download ROI Info", data=st.session_state['ROI_frame'].to_csv(index=False), file_name="ROI_info.csv", mime="text/csv", key='ROI_exp_comp_download')
else:
st.write('No ROI info available') |