James McCool
commited on
Commit
·
5370c50
1
Parent(s):
8fd8af6
Implement GOLF-specific salary and actual_fpts calculations in app.py
Browse files- Updated salary and actual_fpts calculations to handle GOLF sport separately, summing values for all players instead of applying a multiplier for the first player.
- Retained the previous logic for other sports, ensuring consistent functionality across different sport selections.
app.py
CHANGED
|
@@ -221,18 +221,22 @@ with tab2:
|
|
| 221 |
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
|
| 222 |
axis=1
|
| 223 |
)
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
lambda row: (st.session_state['
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
|
| 237 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
| 238 |
lambda row: ','.join(sorted(row.values)),
|
|
|
|
| 221 |
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
|
| 222 |
axis=1
|
| 223 |
)
|
| 224 |
+
if sport_select == 'GOLF':
|
| 225 |
+
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
|
| 226 |
+
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
|
| 227 |
+
else:
|
| 228 |
+
# Modified salary calculation with 1.5x multiplier for first player
|
| 229 |
+
working_df['salary'] = working_df.apply(
|
| 230 |
+
lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
|
| 231 |
+
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
|
| 232 |
+
axis=1
|
| 233 |
+
)
|
| 234 |
+
# Modified actual_fpts calculation with 1.5x multiplier for first player
|
| 235 |
+
working_df['actual_fpts'] = working_df.apply(
|
| 236 |
+
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
|
| 237 |
+
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
|
| 238 |
+
axis=1
|
| 239 |
+
)
|
| 240 |
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
|
| 241 |
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
|
| 242 |
lambda row: ','.join(sorted(row.values)),
|