app and requirements
Browse files- app.py +83 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
|
| 7 |
+
import cv2
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
# Load models
|
| 11 |
+
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
| 12 |
+
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
|
| 13 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
|
| 14 |
+
dl_model = tf.keras.models.load_model('improved_car_damage_prediction_model.h5')
|
| 15 |
+
|
| 16 |
+
# Load parts list
|
| 17 |
+
with open('cars117.json', 'r', encoding='utf-8') as f:
|
| 18 |
+
data = json.load(f)
|
| 19 |
+
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))
|
| 20 |
+
|
| 21 |
+
def process_image(image):
|
| 22 |
+
# Convert to RGB if it's not
|
| 23 |
+
if image.mode != 'RGB':
|
| 24 |
+
image = image.convert('RGB')
|
| 25 |
+
|
| 26 |
+
# Prepare input for the model
|
| 27 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 28 |
+
|
| 29 |
+
# Get damage segmentation
|
| 30 |
+
with torch.no_grad():
|
| 31 |
+
damage_output = damage_seg_model(**inputs).logits
|
| 32 |
+
damage_features = damage_output.squeeze().detach().numpy()
|
| 33 |
+
|
| 34 |
+
# Create damage segmentation heatmap
|
| 35 |
+
damage_heatmap = create_heatmap(damage_features)
|
| 36 |
+
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
|
| 37 |
+
|
| 38 |
+
# Create annotated damage image
|
| 39 |
+
image_array = np.array(image)
|
| 40 |
+
damage_mask = np.argmax(damage_features, axis=0)
|
| 41 |
+
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
|
| 42 |
+
overlay = np.zeros_like(image_array)
|
| 43 |
+
overlay[damage_mask_resized > 0] = [255, 0, 0] # Red color for damage
|
| 44 |
+
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
|
| 45 |
+
|
| 46 |
+
# Process for part prediction and heatmap
|
| 47 |
+
with torch.no_grad():
|
| 48 |
+
part_output = part_seg_model(**inputs).logits
|
| 49 |
+
part_features = part_output.squeeze().detach().numpy()
|
| 50 |
+
part_heatmap = create_heatmap(part_features)
|
| 51 |
+
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
|
| 52 |
+
|
| 53 |
+
# Predict parts to replace
|
| 54 |
+
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
|
| 55 |
+
prediction = dl_model.predict(np.array([input_vector]))
|
| 56 |
+
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
|
| 57 |
+
predicted_parts.sort(key=lambda x: x[1], reverse=True)
|
| 58 |
+
|
| 59 |
+
return (Image.fromarray(annotated_image),
|
| 60 |
+
Image.fromarray(damage_heatmap_resized),
|
| 61 |
+
Image.fromarray(part_heatmap_resized),
|
| 62 |
+
"\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]))
|
| 63 |
+
|
| 64 |
+
def create_heatmap(features):
|
| 65 |
+
heatmap = np.sum(features, axis=0)
|
| 66 |
+
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
|
| 67 |
+
heatmap = np.uint8(255 * heatmap)
|
| 68 |
+
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
| 69 |
+
|
| 70 |
+
iface = gr.Interface(
|
| 71 |
+
fn=process_image,
|
| 72 |
+
inputs=gr.Image(type="pil"),
|
| 73 |
+
outputs=[
|
| 74 |
+
gr.Image(type="pil", label="Annotated Damage"),
|
| 75 |
+
gr.Image(type="pil", label="Damage Heatmap"),
|
| 76 |
+
gr.Image(type="pil", label="Part Segmentation Heatmap"),
|
| 77 |
+
gr.Textbox(label="Predicted Parts to Replace")
|
| 78 |
+
],
|
| 79 |
+
title="Car Damage Assessment",
|
| 80 |
+
description="Upload an image of a damaged car to get an assessment."
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
iface.launch(share=True)
|
requirements.txt
ADDED
|
Binary file (4.15 kB). View file
|
|
|