Delete app.py
Browse files
app.py
DELETED
|
@@ -1,85 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
from PIL import Image, ImageDraw
|
| 4 |
-
|
| 5 |
-
# Define your labels
|
| 6 |
-
part_labels = ["front-bumper", "fender", "hood", "door", "trunk"]
|
| 7 |
-
damage_labels = ["dent", "scratch", "misalignment", "crack"]
|
| 8 |
-
|
| 9 |
-
def mock_inference(image):
|
| 10 |
-
# This function mocks the segmentation model output
|
| 11 |
-
# It randomly assigns labels to different parts of the image
|
| 12 |
-
height, width = image.shape[:2]
|
| 13 |
-
part_mask = np.random.randint(0, len(part_labels), (height, width))
|
| 14 |
-
damage_mask = np.random.randint(0, len(damage_labels), (height, width))
|
| 15 |
-
return part_mask, damage_mask
|
| 16 |
-
|
| 17 |
-
def combine_masks(part_mask, damage_mask):
|
| 18 |
-
part_damage_pairs = []
|
| 19 |
-
for part_id, part_name in enumerate(part_labels):
|
| 20 |
-
for damage_id, damage_name in enumerate(damage_labels):
|
| 21 |
-
part_binary = (part_mask == part_id)
|
| 22 |
-
damage_binary = (damage_mask == damage_id)
|
| 23 |
-
intersection = np.logical_and(part_binary, damage_binary)
|
| 24 |
-
if np.any(intersection):
|
| 25 |
-
part_damage_pairs.append((part_name, damage_name))
|
| 26 |
-
return part_damage_pairs
|
| 27 |
-
|
| 28 |
-
def create_one_hot_vector(part_damage_pairs):
|
| 29 |
-
vector = np.zeros(len(part_labels) * len(damage_labels))
|
| 30 |
-
for part, damage in part_damage_pairs:
|
| 31 |
-
if part in part_labels and damage in damage_labels:
|
| 32 |
-
part_index = part_labels.index(part)
|
| 33 |
-
damage_index = damage_labels.index(damage)
|
| 34 |
-
vector_index = part_index * len(damage_labels) + damage_index
|
| 35 |
-
vector[vector_index] = 1
|
| 36 |
-
return vector
|
| 37 |
-
|
| 38 |
-
def visualize_results(image, part_mask, damage_mask):
|
| 39 |
-
img = Image.fromarray(image)
|
| 40 |
-
draw = ImageDraw.Draw(img)
|
| 41 |
-
|
| 42 |
-
for i in range(0, img.width, 10): # Sample every 10th pixel for efficiency
|
| 43 |
-
for j in range(0, img.height, 10):
|
| 44 |
-
part = part_labels[part_mask[j, i]]
|
| 45 |
-
damage = damage_labels[damage_mask[j, i]]
|
| 46 |
-
draw.point((i, j), fill="red")
|
| 47 |
-
|
| 48 |
-
return img
|
| 49 |
-
|
| 50 |
-
def process_image(image):
|
| 51 |
-
# Mock inference
|
| 52 |
-
part_mask, damage_mask = mock_inference(image)
|
| 53 |
-
|
| 54 |
-
# Combine masks
|
| 55 |
-
part_damage_pairs = combine_masks(part_mask, damage_mask)
|
| 56 |
-
|
| 57 |
-
# Create one-hot encoded vector
|
| 58 |
-
one_hot_vector = create_one_hot_vector(part_damage_pairs)
|
| 59 |
-
|
| 60 |
-
# Visualize results
|
| 61 |
-
result_image = visualize_results(image, part_mask, damage_mask)
|
| 62 |
-
|
| 63 |
-
return result_image, part_damage_pairs, one_hot_vector.tolist()
|
| 64 |
-
|
| 65 |
-
def gradio_interface(input_image):
|
| 66 |
-
result_image, part_damage_pairs, one_hot_vector = process_image(input_image)
|
| 67 |
-
|
| 68 |
-
# Convert part_damage_pairs to a string for display
|
| 69 |
-
damage_description = "\n".join([f"{part} : {damage}" for part, damage in part_damage_pairs])
|
| 70 |
-
|
| 71 |
-
return result_image, damage_description, str(one_hot_vector)
|
| 72 |
-
|
| 73 |
-
iface = gr.Interface(
|
| 74 |
-
fn=gradio_interface,
|
| 75 |
-
inputs=gr.Image(type="numpy"),
|
| 76 |
-
outputs=[
|
| 77 |
-
gr.Image(type="pil", label="Detected Damage (Mocked)"),
|
| 78 |
-
gr.Textbox(label="Damage Description"),
|
| 79 |
-
gr.Textbox(label="One-hot Encoded Vector")
|
| 80 |
-
],
|
| 81 |
-
title="Car Damage Assessment (Demo)",
|
| 82 |
-
description="Upload an image of a damaged car to get a mocked assessment of the damage. Note: This is a demo using random predictions, not actual model inference."
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|