|
|
import gradio as gr
|
|
|
import torch
|
|
|
from PIL import Image
|
|
|
import numpy as np
|
|
|
import tensorflow as tf
|
|
|
from transformers import SegformerForSemanticSegmentation, AutoFeatureExtractor
|
|
|
import cv2
|
|
|
import json
|
|
|
|
|
|
|
|
|
part_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/huggingCars")
|
|
|
damage_seg_model = SegformerForSemanticSegmentation.from_pretrained("Mohaddz/DamageSeg")
|
|
|
feature_extractor = AutoFeatureExtractor.from_pretrained("Mohaddz/huggingCars")
|
|
|
dl_model = tf.keras.models.load_model('improved_car_damage_prediction_model.h5')
|
|
|
|
|
|
|
|
|
with open('cars117.json', 'r', encoding='utf-8') as f:
|
|
|
data = json.load(f)
|
|
|
all_parts = sorted(list(set(part for entry in data.values() for part in entry.get('replaced_parts', []))))
|
|
|
|
|
|
def process_image(image):
|
|
|
|
|
|
if image.mode != 'RGB':
|
|
|
image = image.convert('RGB')
|
|
|
|
|
|
|
|
|
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
damage_output = damage_seg_model(**inputs).logits
|
|
|
damage_features = damage_output.squeeze().detach().numpy()
|
|
|
|
|
|
|
|
|
damage_heatmap = create_heatmap(damage_features)
|
|
|
damage_heatmap_resized = cv2.resize(damage_heatmap, (image.size[0], image.size[1]))
|
|
|
|
|
|
|
|
|
image_array = np.array(image)
|
|
|
damage_mask = np.argmax(damage_features, axis=0)
|
|
|
damage_mask_resized = cv2.resize(damage_mask, (image.size[0], image.size[1]), interpolation=cv2.INTER_NEAREST)
|
|
|
overlay = np.zeros_like(image_array)
|
|
|
overlay[damage_mask_resized > 0] = [255, 0, 0]
|
|
|
annotated_image = cv2.addWeighted(image_array, 1, overlay, 0.5, 0)
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
part_output = part_seg_model(**inputs).logits
|
|
|
part_features = part_output.squeeze().detach().numpy()
|
|
|
part_heatmap = create_heatmap(part_features)
|
|
|
part_heatmap_resized = cv2.resize(part_heatmap, (image.size[0], image.size[1]))
|
|
|
|
|
|
|
|
|
input_vector = np.concatenate([part_features.mean(axis=(1, 2)), damage_features.mean(axis=(1, 2))])
|
|
|
prediction = dl_model.predict(np.array([input_vector]))
|
|
|
predicted_parts = [(all_parts[i], float(prob)) for i, prob in enumerate(prediction[0]) if prob > 0.1]
|
|
|
predicted_parts.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
|
|
return (Image.fromarray(annotated_image),
|
|
|
Image.fromarray(damage_heatmap_resized),
|
|
|
Image.fromarray(part_heatmap_resized),
|
|
|
"\n".join([f"{part}: {prob:.2f}" for part, prob in predicted_parts[:5]]))
|
|
|
|
|
|
def create_heatmap(features):
|
|
|
heatmap = np.sum(features, axis=0)
|
|
|
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
|
|
|
heatmap = np.uint8(255 * heatmap)
|
|
|
return cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
|
|
|
|
|
iface = gr.Interface(
|
|
|
fn=process_image,
|
|
|
inputs=gr.Image(type="pil"),
|
|
|
outputs=[
|
|
|
gr.Image(type="pil", label="Annotated Damage"),
|
|
|
gr.Image(type="pil", label="Damage Heatmap"),
|
|
|
gr.Image(type="pil", label="Part Segmentation Heatmap"),
|
|
|
gr.Textbox(label="Predicted Parts to Replace")
|
|
|
],
|
|
|
title="Car Damage Assessment",
|
|
|
description="Upload an image of a damaged car to get an assessment."
|
|
|
)
|
|
|
|
|
|
iface.launch(share=True) |