File size: 29,752 Bytes
494b09f 392710b 5335699 46dd541 494b09f b38b149 494b09f e28c0cb 494b09f d22fd24 db6fe0f 1ea56a7 995c030 494b09f 6f26ba4 494b09f a73c6b3 494b09f bca051f 750ba2f 494b09f 6f26ba4 494b09f 995c030 1ea56a7 3925794 1ea56a7 3925794 0dae490 3925794 0dae490 1ea56a7 494b09f fbf9ef6 494b09f 15b06e6 494b09f bca051f 494b09f bca051f 494b09f bca051f 494b09f bca051f 494b09f 5396439 3925794 4126607 494b09f bca051f 494b09f a37bee9 494b09f bca051f 494b09f bca051f 494b09f fbf9ef6 750ba2f fbf9ef6 516a384 7273ef0 fbf9ef6 5396439 750ba2f f2eee5c 81b71b0 fbf9ef6 516a384 ab28591 666cb98 5620cfc 9a5f1af fbf9ef6 666cb98 fbf9ef6 494b09f 3925794 494b09f 53dbf30 fbf9ef6 bca051f a73c6b3 fbf9ef6 5396439 bca051f fbf9ef6 402adb3 fac6de6 fbf9ef6 5396439 bca051f fbf9ef6 53dbf30 7273ef0 53dbf30 5396439 53dbf30 a73c6b3 7273ef0 8563685 f305257 402adb3 7273ef0 5b587ba 6b5a0fd f305257 53dbf30 7273ef0 53dbf30 ab82f09 42b4e9e ab82f09 95b85ac ab82f09 d22fd24 53dbf30 358265f bca051f 53dbf30 fa52948 57c5e88 358265f 57c5e88 53dbf30 fa52948 57c5e88 53dbf30 d22fd24 53dbf30 574cec8 53dbf30 d22fd24 42b4e9e 1ea56a7 d22fd24 494b09f d22fd24 a4dc619 d22fd24 57c5e88 a280dec a4dc619 a280dec fd48538 a4dc619 db6fe0f 81b71b0 a280dec d22fd24 5527c4e 15b06e6 5527c4e 15b06e6 5527c4e a280dec a4dc619 5335699 99995bc d22fd24 494b09f f166064 494b09f 53dbf30 494b09f a37bee9 494b09f d22fd24 494b09f 0338b1c 53dbf30 d22fd24 494b09f 13768d7 4a7de3e fcaf284 494b09f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
import os
# mit TOP untersuchen und vorher LLM auskommentieren..
#ssh login:ssh -i "C:\Users\xy0\.ssh\id_ecdsa" [email protected]
#os.environ["CUDA_VISIBLE_DEVICES"] = "" # Disable CUDA initialization
os.environ["allow_dangerous_deserialization"] = "True"
print(os.getcwd())
embedding_path="/home/user/app/docs/_embeddings/index.faiss"
print(f"Loading FAISS index from: {embedding_path}")
print("Version 11:03")
if not os.path.exists(embedding_path):
print("File not found!")
HF_KEY=os.getenv('Gated_Repo')
SAIA_KEY = os.getenv('SAIA_KEY')
import spaces
import time
from typing import final
import asyncio
import torch
import gradio as gr
import threading
import re
import csv
import json
import gc
import multiprocessing
import resource
from openai import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.docstore import InMemoryDocstore
from langchain_community.document_loaders import TextLoader
from langchain.docstore.document import Document as LangchainDocument
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.indexing import index
from langchain_core.vectorstores import VectorStore
from llama_index.core.node_parser import TextSplitter
#from langchain.retrievers import BM25Retriever, EnsembleRetriever
from langchain.retrievers import EnsembleRetriever
from langchain_community.retrievers import BM25Retriever
from llama_index.legacy.vector_stores import FaissVectorStore
from pycparser.ply.yacc import token
from ragatouille import RAGPretrainedModel
from langchain_text_splitters import MarkdownHeaderTextSplitter, CharacterTextSplitter
from sentence_transformers import SentenceTransformer
from sqlalchemy.testing.suite.test_reflection import metadata
from sympy.solvers.diophantine.diophantine import length
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextIteratorStreamer
from transformers import pipeline
#DEPR:from langchain.vectorstores import FAISS
import faiss
from langchain_community.vectorstores import FAISS
#DEPR: from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
from huggingface_hub import login
# Press Umschalt+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.
login(token=HF_KEY)
vectorstore=None
rerankingModel=None
bm25_retriever=None
docstore=None
class BSIChatbot:
embedding_model = None
llmpipeline = None
llmtokenizer = None
vectorstore = None
images = [None]
# model_paths = {
# 'llm_path': 'meta-llama/Llama-3.2-3B-Instruct',
# 'embed_model_path': 'intfloat/multilingual-e5-large-instruct',
# 'rerank_model_path': 'domci/ColBERTv2-mmarco-de-0.1'
# }
llm_base_url = "https://chat-ai.academiccloud.de/v1"
llm_remote_model = "qwen2.5-72b-instruct"
llm_client = OpenAI(
api_key = SAIA_KEY,
base_url = llm_base_url
)
llm_path = "meta-llama/Llama-3.2-3B-Instruct"
word_and_embed_model_path = "intfloat/multilingual-e5-large-instruct"
docs = "/home/user/app/docs"
#docs = "H:\\Uni\\Master\\Masterarbeit\\Masterarbeit\\daten\\_parsed_embed_test"
rerankModelPath="AdrienB134/ColBERTv1.0-german-mmarcoDE"
embedPath="/home/user/app/docs/_embeddings"
def __init__(self):
self.embedding_model = None
#self.vectorstore: VectorStore = None
def using(self,point=""):
usage = resource.getrusage(resource.RUSAGE_SELF)
return '''%s: usertime=%s systime=%s mem=%s mb
''' % (point, usage[0], usage[1],
usage[2] / 1024.0)
def cleanResources(self):
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / 1024 / 1024} MB")
print(f"GPU Memory Cached: {torch.cuda.memory_reserved() / 1024 / 1024} MB")
multiprocessing.active_children()
print("processes:")
print(multiprocessing.active_children())
for child in multiprocessing.active_children():
child.terminate()
child.join()
#multiprocessing.resource_tracker.unregister('Semaphore')
torch.cuda.empty_cache()
gc.collect()
def initializeEmbeddingModel(self, new_embedding):
global vectorstore
RAW_KNOWLEDGE_BASE = []
#Qdrant:
#client = QdrantClient(path=saved_db_path)
#db = Qdrant(client=client, collection_name=self.collection_name, embeddings=embeddings, )
#Embedding, Vector generation and storing:
if self.embedding_model is None:
self.embedding_model = HuggingFaceEmbeddings(
model_name=self.word_and_embed_model_path,
multi_process=False,
model_kwargs={"device": "cuda"},
encode_kwargs={"normalize_embeddings": True}, # Set `True` for cosine similarity
)
#index_cpu = faiss.IndexFlatL2(1024)
#res = faiss.StandardGpuResources()
#index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu)
dirList = os.listdir(self.docs)
if (new_embedding==True):
for doc in dirList:
print(doc)
if (".md" in doc):
##doctxt = TextLoader(docs + "\\" + doc).load()
file = open(self.docs + "\\" + doc, 'r', encoding='utf-8')
doctxt = file.read()
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc}))
file.close()
if (".txt" in doc):
file = open(self.docs + "\\" + doc, 'r', encoding='cp1252')
doctxt = file.read()
if doc.replace(".txt",".png") in dirList:
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc.replace(".txt",".png")}))
if doc.replace(".txt",".jpg") in dirList:
RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content=doctxt, metadata={"source": doc.replace(".txt",".jpg")}))
file.close()
# RAW_KNOWLEDGE_BASE.append(txtLoader)
# print(RAW_KNOWLEDGE_BASE)
# Chunking starts here
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
("####", "Header 4"),
("#####", "Header 5"),
]
markdown_splitter = MarkdownHeaderTextSplitter(
headers_to_split_on=headers_to_split_on,
strip_headers=True
)
tokenizer = AutoTokenizer.from_pretrained(self.word_and_embed_model_path)
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
tokenizer=tokenizer,
chunk_size=512, # The maximum number of words in a chunk
chunk_overlap=0, # The number of characters to overlap between chunks
add_start_index=True, # If `True`, includes chunk's start index in metadata
strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document
)
##Was macht man mit start Index herausfinden und wie metadata adden
docs_processed = []
for doc in RAW_KNOWLEDGE_BASE:
#newprint(f"Word-Length in doc:{len(doc.page_content.split())}")
doc_cache = markdown_splitter.split_text(doc.page_content)
# print(f"Word-Length in doc_cache after MarkdownSplitter:{len(doc_cache.split())}")
doc_cache = text_splitter.split_documents(doc_cache)
# print(f"Word-Length in doc_cache after text_splitter:{len(doc_cache.split())}")
for chunk in doc_cache:
chunk.metadata.update({"source": doc.metadata['source']})
#newprint(f"Chunk_Debug len: {len(chunk.page_content.split())} and Chunk:{chunk}")
# DEBUG:
# print(f"doc_cache after Metadata added:{doc_cache}\n")
docs_processed += doc_cache
#final_docs = []
#for doc in docs_processed:
# final_docs += text_splitter.split_documents([doc])
#docs_processed = final_docs
##Ab hier alt:
# MARKDOWN_SEPARATORS = [
# "\n\n",
# "---"
# "\n",
# " ",
# ""
# ]
#text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=512, # The maximum number of characters in a chunk
# chunk_overlap=100, # The number of characters to overlap between chunks
# add_start_index=True, # If `True`, includes chunk's start index in metadata
# strip_whitespace=True, # If `True`, strips whitespace from the start and end of every document
# separators=MARKDOWN_SEPARATORS,
#)
#docs_processed = []
#for doc in RAW_KNOWLEDGE_BASE:
# docs_processed += text_splitter.split_documents([doc])
#newprint(f"Docs processed:{len(docs_processed)}")
# Max_Sequence_Length of e5 large instr = 512 Tokens
# Make sure the maximum length is below embedding size
lengths = [len(s.page_content) for s in docs_processed]
print(max(lengths))
#for l in docs_processed:
# print(f"Char-Length:{len(l.page_content.split())}")
# print(f"Tokenizer Length: {len(tokenizer.tokenize(l.page_content))}")
#if (max(lengths) > SentenceTransformer(self.word_and_embed_model_path).max_seq_length):
# print(
# f'Error: Fit chunking size into embedding model.. Chunk{max(lengths)} is bigger than {SentenceTransformer(self.word_and_embed_model_path).Max_Sequence_Length}')
start = time.time()
#docstore = InMemoryDocstore({str(i): doc for i, doc in enumerate(docs_processed)})
#index_to_docstore_id = {i: str(i) for i in range(len(docs_processed))}
vectorstore = FAISS.from_documents(docs_processed, self.embedding_model, distance_strategy=DistanceStrategy.COSINE)
#self.vectorstore = FAISS(
# embedding_function=self.embedding_model,
# index=index_gpu,
# distance_strategy=DistanceStrategy.COSINE,
# docstore=docstore,
# index_to_docstore_id=index_to_docstore_id
#)
#self.vectorstore.from_documents(docs_processed, self.embedding_model)
#index_cpu = faiss.index_gpu_to_cpu(self.vectorstore.index)
#self.vectorstore.index = index_cpu
vectorstore.save_local(self.embedPath)
#self.vectorstore.index = index_gpu
end = time.time()
#newprint("Saving Embeddings took", end-start, "seconds!")
else:
start = time.time()
if vectorstore is None:
print("Checkpoint: FAISS Vectorstore initialized...")
vectorstore = FAISS.load_local(self.embedPath, self.embedding_model, allow_dangerous_deserialization=True)
#self.vectorstore.index = index_gpu
end = time.time()
#newprint("Loading Embeddings took", end - start, "seconds!")
def retrieveSimiliarEmbedding(self, query):
global vectorstore
print("Retrieving Embeddings...")
start = time.time()
query = f"Instruct: Given a search query, retrieve the relevant passages that answer the query\nQuery:{query}"
#self.vectorstore.
#retrieved_chunks = self.vectorstore.similarity_search(query=query, k=20)
retrieved_chunks = vectorstore.similarity_search(query=query, k=30)
#finalchunks = []
#for chunk in retrieved_chunks:
# if "---" not in chunk.page_content:
# finalchunks.append(chunk)
#retrieved_chunks = finalchunks
end = time.time()
#newrint("Retrieving Chunks with similiar embeddings took", end - start, "seconds!")
#print("\n==================================Top document==================================")
#print(retrieved_chunks[0].page_content)
#print(retrieved_chunks[1].page_content)
#print(retrieved_chunks[2].page_content)
#print("==================================Metadata==================================")
#print(retrieved_chunks[0].metadata)
#print(retrieved_chunks[1].metadata)
#print(retrieved_chunks[2].metadata)
#newprint(f"printing first chunk to see whats inside: {retrieved_chunks[0]}")
return retrieved_chunks
def retrieveDocFromFaiss(self):
global vectorstore
global docstore
all_documents = []
#print(vectorstore.index_to_docstore_id)
#newprint(vectorstore)
# Iteriere über alle IDs im index_to_docstore_id
if docstore is None:
docstore = vectorstore.docstore._dict.values()
#for doc_id in vectorstore.index_to_docstore_id.values():
for entry in docstore:
# Hole das Dokument aus dem docstore
#print("DBG:"+doc_id)
#document = vectorstore.get_by_ids(doc_id)
#document bleibt leer.. Warum???
#print("DBG: DOC")
#print(entry)
all_documents.append(entry)
#print("DBG Document1:")
#print(all_documents)
return all_documents
def queryLLM(self,query):
#resp = self.llmpipeline(chat) Fixen
return(self.llmpipeline(query)[0]["generated_text"])
def initializeRerankingModel(self):
global rerankingModel
if rerankingModel is None:
print("Checkpoint: Reranker initialized...")
rerankingModel = RAGPretrainedModel.from_pretrained(self.rerankModelPath)
def retrieval(self, query, rerankingStep, hybridSearch):
global vectorstore
global bm25_retriever
global rerankingModel
if hybridSearch == True:
allDocs = self.retrieveDocFromFaiss()
if bm25_retriever is None:
bm25_retriever = BM25Retriever.from_documents(allDocs)
#TODO!
retriever_k=25
bm25_retriever.k= retriever_k
vectordb = vectorstore.as_retriever(search_kwargs={"k":retriever_k})
ensemble_retriever = EnsembleRetriever(retrievers=[bm25_retriever, vectordb], weights=[0.5, 0.5])
retrieved_chunks = ensemble_retriever.invoke(query)
#retrieved_chunks = ensemble_retriever.get_relevant_documents(query)
#newprint("DBG: Number of Chunks retrieved")
#newprint(len(retrieved_chunks))
else:
retrieved_chunks = self.retrieveSimiliarEmbedding(query)
retrieved_chunks_text = []
# TODO Irgendwas stimmt hier mit den Listen nicht
for chunk in retrieved_chunks:
# TODO Hier noch was smarteres Überlegen für alle Header
if "Header 1" in chunk.metadata.keys():
retrieved_chunks_text.append(
f"The Document is: '{chunk.metadata['source']}'\nHeader of the Section is: '{chunk.metadata['Header 1']}' and Content of it:{chunk.page_content}")
else:
retrieved_chunks_text.append(
f"The Document is: '{chunk.metadata['source']}'\nImage Description is: ':{chunk.page_content}")
i = 1
for chunk in retrieved_chunks_text:
#newprint(f"Retrieved Chunk number {i}:\n{chunk}")
i = i + 1
if rerankingStep == True:
if rerankingModel is None:
self.initializeRerankingModel()
print("Starting Reranking Chunks...")
#rerankingModel
#newprint("DBG:retrieved_chunks_text")
#newprint(type(retrieved_chunks_text))
#new print(retrieved_chunks_text)
with torch.no_grad():
print("reranking chunks (reverse)..")
retrieved_chunks_text = rerankingModel.rerank(query, retrieved_chunks_text, k=20)
#newprint("DBG:retrieved_chunks_text after rerank")
#newprint(type(retrieved_chunks_text))
#newprint(retrieved_chunks_text)a
#for chunk in reversed(retrieved_chunks_text):
#print(chunk["rank"])
retrieved_chunks_text = [chunk["content"] for chunk in reversed(retrieved_chunks_text)]
#retrieved_chunks_text = [chunk["content"] for chunk in retrieved_chunks_text]
i = 1
for chunk in retrieved_chunks_text:
#newprint(f"Reranked Chunk number {i}:\n{chunk}")
i = i + 1
context = "\nExtracted documents:\n"
context += "".join([doc for i, doc in enumerate(retrieved_chunks_text)])
return query, context
def queryRemoteLLM(self, systemPrompt, query, summary):
if summary != True:
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "system", "content": systemPrompt},
{"role": "user", "content": "Step-Back Frage, die neu gestellt werden soll: " + query}],
model=self.llm_remote_model,
)
if summary == True:
chat_completion = self.llm_client.chat.completions.create(
messages=[{"role": "system", "content": systemPrompt},
{"role": "user", "content": query}],
model=self.llm_remote_model,
)
return chat_completion.choices[0].message.content
def stepBackPrompt(self, query):
systemPrompt = """
Sie sind ein Experte für den IT-Grundschutz des BSI.
Ihre Aufgabe ist es, eine Frage neu zu formulieren und sie in eine
Stepback-Frage umzuformulieren, die nach einem Grundkonzept der Begrifflichkeit fragt.
Hier sind ein paar Beispiele:
Ursprüngliche Frage: Welche Bausteine werden auf einen Webserver angewendet?
Stepback-Frage: Wie werden Bausteine im IT-Grundschutz angewendet?
Ursprüngliche Frage: Wer war der Ehemann von Anna Karina von 1968 bis 1974?
Stepback-Frage: Wer waren die Ehegatten von Anna Karina?
Ursprüngliche Frage: Welche Inhalte enthält der Standard 200-1?
Stepback Frage: Welche Standards gibt es im IT-Grundschutz?
"""
stepBackQuery = self.queryRemoteLLM(systemPrompt, query, False)
return stepBackQuery
def ragPromptNew(self, query, rerankingStep, history, stepBackPrompt, returnContext):
global rerankingModel
prompt_in_chat_format = [
{
"role": "system",
"content": """You are an helpful Chatbot for the BSI IT-Grundschutz. Using the information contained in the context,
give a comprehensive answer to the question.
Respond only to the question asked, response should be concise and relevant but also give some context to the question.
Provide the source document when relevant for the understanding.
If the answer cannot be deduced from the context, do not give an answer.""",
},
{
"role": "user",
"content": """Context:
{context}
---
Chat-History:
{history}
---
Now here is the question you need to answer.
Question: {question}""",
},
]
# RAG_PROMPT_TEMPLATE = self.llmtokenizer.apply_chat_template(
# prompt_in_chat_format, tokenize=False, add_generation_prompt=True
# )
# Alles außer letzte Useranfrage, Normaler Query
query, context = self.retrieval(query, rerankingStep, True)
if stepBackPrompt == True:
stepBackQuery = self.stepBackPrompt(query)
#newprint("DBG stepBackQuery:" + stepBackQuery)
stepBackQuery, stepBackContext = self.retrieval(stepBackQuery, rerankingStep, True)
#newprint("DBG stepBackContext:" + stepBackContext)
sysPrompt = """
You are an helpful Chatbot for the BSI IT-Grundschutz. Using the information contained in the context,
give a comprehensive answer to the question.
Respond only to the question asked, response should be concise and relevant but also give some context to the question.
Provide the source document when relevant for the understanding.
If the answer cannot be deduced from the context, do not give an answer.
"""
stepBackAnswer = self.queryRemoteLLM(sysPrompt, stepBackQuery, True)
#newprint("DBG stepBackAnswer:" + stepBackAnswer)
context += "Übergreifende Frage:" + stepBackQuery + "Übergreifender Context:" + stepBackAnswer
#def queryRemoteLLM(self, systemPrompt, query, summary):
if (history != None):
prompt_in_chat_format[-1]["content"] = prompt_in_chat_format[-1]["content"].format(
question=query, context=context, history=history[:-1]
)
else:
prompt_in_chat_format[-1]["content"] = prompt_in_chat_format[-1]["content"].format(
question=query, context=context, history="None"
)
final_prompt = prompt_in_chat_format
# final_prompt = prompt_in_chat_format[-1]["content"].format(
# question=query, context=context, history=history[:-1]
# )
print(f"DBG: Final-Query:\n{final_prompt}")
pattern = r"Filename:(.*?);"
last_value = final_prompt[-1]["content"]
match = re.findall(pattern, last_value)
self.images = match
if (returnContext == False):
stream = self.llm_client.chat.completions.create(
messages=final_prompt,
model=self.llm_remote_model,
stream=True
)
return stream
else:
answer = self.llm_client.chat.completions.create(
messages=final_prompt,
model=self.llm_remote_model,
stream=False
)
self.cleanResources()
return answer, context
def returnImages(self):
imageList = []
for image in self.images:
imageList.append(f"{self.docs}\\{image}")
return imageList
def launchGr(self):
gr.Interface.from_pipeline(self.llmpipeline).launch()
def generateEvalDataset(self):
filepath = "/home/user/app/docs/_eval/BSI_Lektion_Ground_Truth.CSV"
with open(filepath, mode='r', encoding="latin1", errors="replace") as file:
# Create a CSV reader with DictReader
csv_reader = csv.DictReader(file, delimiter="|")
# Initialize an empty list to store the dictionaries
data_list = []
# Iterate through each row in the CSV file
for row in csv_reader:
# Append each row (as a dictionary) to the list
data_list.append(row)
# Print the list of dictionaries
for data in data_list:
data["Context"] = None
data["Answer"] = None
print(data_list)
i=1
#for data in data_list[:3]:
print("starting to generate evaldataset..")
for data in data_list:
print("Eval Entry no:")
print(i)
print("GPU Memory Allocated:")
print(torch.cuda.memory_allocated()/1024/1024/1024)
print("frage:")
print(data["Frage"])
#def ragPromptNew(self, query, rerankingStep, history, stepBackPrompt)
try:
print(self.using("PreRag"))
data["Answer"],data["Context"] = self.ragPromptNew(data["Frage"],True,None,True, True)
print(self.using("AfterRag"))
data["Answer"]=data["Answer"].choices[0].message.content
except Exception as e:
print(f"Fehler bei Eintrag {i}: {e}")
print("DBG: storing Answer")
print(data["Answer"][:20])
print("in")
print(data["Frage"])
print(data["Frage_index"])
print(data["Lektion"])
#print(data)
i=i+1
with open('/home/user/app/docs/_eval/eval_dataset.json', 'a') as fout:
fout.write(json.dumps(data, ensure_ascii=False) + "\n")
# Print full response as JSON
# print(chat_completion)
if __name__ == '__main__':
#RAW_KNOWLEDGE_BASE = []
#RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content="1Text", metadata={"source": "bb"}))
#RAW_KNOWLEDGE_BASE.append(LangchainDocument(page_content="2Text", metadata={"source": "aa"}))
#RAW_KNOWLEDGE_BASE[0].metadata.update({"NeuerKey":"White"})
#print(RAW_KNOWLEDGE_BASE)
#time.sleep(10)
#{doc.page_content} [{doc.metadata}] => aktuellen Header in jeden Chunk embedden; Doc.Metadata retrieven
eval = False # generates Eval Dataset
renewEmbeddings = False
reranking = True
stepBackEnable = True
bot = BSIChatbot()
bot.initializeEmbeddingModel(renewEmbeddings)
if reranking == True:
bot.initializeRerankingModel()
#TODO: DEBUG:
#bot.retrieveSimiliarEmbedding("Was ist der IT-Grundschutz?")
#TODO: DEBUG:
#time.sleep(10)
#bot.initializeLLM()
#bot.retrieveSimiliarEmbedding("Welche Typen von Anforderungen gibt es im IT-Grundschutz?")
#bot.queryLLM("Welche Typen von Anforderungen gibt es im IT-Grundschutz?")
#bot.ragPrompt("""
#Welche Informationen beinhaltet die IT-Grundschutz-Methodik (BSI-Standard 200-2)? Wähle aus den folgenden Antwortmöglichkeiten (mehrere können richtig sein!):
#A: besonders schutzwürdigen Komponenten,
#B: methodische Hilfestellungen zur schrittweisen Einführung eines ISMS,
#C: wie die Informationssicherheit im laufenden Betrieb aufrechterhalten und kontinuierlich verbessert werden kann,
#D: effiziente Verfahren, um die allgemeinen Anforderungen des BSI-Standards 200-1 zu konkretisieren
#""", True)
if (eval==True):
bot.generateEvalDataset()
#bot.launchGr()
with gr.Blocks() as demo:
with gr.Row() as row:
with gr.Column(scale=3):
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox()
clear = gr.Button("Clear")
reset = gr.Button("Reset")
with gr.Column(scale=1): # Bildergalerie
gallery = gr.Gallery(label="Bildergalerie",elem_id="gallery")
def user(user_message, history: list):
return "", history + [{"role": "user", "content": user_message}]
def returnImages():
# Hier holen wir uns die Bildpfade und wandeln sie in gr.Image-Objekte um
image_paths = bot.returnImages()
print(f"returning images: {image_paths}")
return image_paths
def gradiobot(history: list):
start = time.time()
print(f"DBG: ragQuery hist -1:{history[-1].get('content')}")
print(f"DBG: ragQuery hist 0:{history[0].get('content')}")
print(f"DBG: fullHistory: {history}" )
#bot_response = bot.ragPromptRemote(history[-1].get('content'), reranking, history)
bot_response = bot.ragPromptNew(history[-1].get('content'), reranking, history, stepBackEnable, False)
history.append({"role": "assistant", "content": ""})
image_gallery = returnImages()
for token in bot_response:
#if "eot_id" in token.choices[0].delta.content:
# token = token.replace("<|eot_id|>","")
#if token.choices[0].delta.content.startswith("-"):
# token = f"\n{token}"
#if re.match(r"^[1-9]\.",token.choices[0].delta.content):
# token = f"\n{token}"
if token.choices and len(token.choices) > 0:
if token.choices[0].delta.content != "":
history[-1]['content'] += token.choices[0].delta.content
yield history, image_gallery
end = time.time()
print("End2End Query took", end - start, "seconds!")
def resetHistory():
return []
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
gradiobot, inputs=[chatbot], outputs=[chatbot, gallery]
)
clear.click(lambda: None, None, chatbot, queue=False)
reset.click(resetHistory, outputs=chatbot, queue=False)
demo.css = """
#gallery {
display: grid;
grid-template-columns: repeat(2, 1fr);
gap: 10px;
height: 400px;
overflow: auto;
}
"""
demo.launch(allowed_paths=["/home/user/app/docs"])
#Answer: B, C und D => Korrekt!
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
|