added EvalDataset Generation
Browse files
app.py
CHANGED
@@ -95,8 +95,16 @@ class BSIChatbot:
|
|
95 |
#self.vectorstore: VectorStore = None
|
96 |
|
97 |
def cleanResources(self):
|
|
|
|
|
98 |
multiprocessing.active_children()
|
|
|
99 |
print(multiprocessing.active_children())
|
|
|
|
|
|
|
|
|
|
|
100 |
#multiprocessing.resource_tracker.unregister('Semaphore')
|
101 |
torch.cuda.empty_cache()
|
102 |
gc.collect()
|
@@ -246,6 +254,7 @@ class BSIChatbot:
|
|
246 |
else:
|
247 |
start = time.time()
|
248 |
if vectorstore is None:
|
|
|
249 |
vectorstore = FAISS.load_local(self.embedPath, self.embedding_model, allow_dangerous_deserialization=True)
|
250 |
#self.vectorstore.index = index_gpu
|
251 |
end = time.time()
|
@@ -310,7 +319,9 @@ class BSIChatbot:
|
|
310 |
|
311 |
def initializeRerankingModel(self):
|
312 |
global rerankingModel
|
313 |
-
rerankingModel
|
|
|
|
|
314 |
|
315 |
|
316 |
def retrieval(self, query, rerankingStep, hybridSearch):
|
|
|
95 |
#self.vectorstore: VectorStore = None
|
96 |
|
97 |
def cleanResources(self):
|
98 |
+
print(f"GPU Memory Allocated: {torch.cuda.memory_allocated() / 1024 / 1024} MB")
|
99 |
+
print(f"GPU Memory Cached: {torch.cuda.memory_reserved() / 1024 / 1024} MB")
|
100 |
multiprocessing.active_children()
|
101 |
+
print("processes:")
|
102 |
print(multiprocessing.active_children())
|
103 |
+
|
104 |
+
for child in multiprocessing.active_children():
|
105 |
+
child.terminate()
|
106 |
+
child.join()
|
107 |
+
|
108 |
#multiprocessing.resource_tracker.unregister('Semaphore')
|
109 |
torch.cuda.empty_cache()
|
110 |
gc.collect()
|
|
|
254 |
else:
|
255 |
start = time.time()
|
256 |
if vectorstore is None:
|
257 |
+
print("Checkpoint: FAISS Vectorstore initialized...")
|
258 |
vectorstore = FAISS.load_local(self.embedPath, self.embedding_model, allow_dangerous_deserialization=True)
|
259 |
#self.vectorstore.index = index_gpu
|
260 |
end = time.time()
|
|
|
319 |
|
320 |
def initializeRerankingModel(self):
|
321 |
global rerankingModel
|
322 |
+
if rerankingModel is None:
|
323 |
+
print("Checkpoint: Reranker initialized...")
|
324 |
+
rerankingModel = RAGPretrainedModel.from_pretrained(self.rerankModelPath)
|
325 |
|
326 |
|
327 |
def retrieval(self, query, rerankingStep, hybridSearch):
|