File size: 1,808 Bytes
32cd99d
e5bfb7c
 
 
32cd99d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5bfb7c
bdd2112
 
32cd99d
bdd2112
 
32cd99d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
from datasets import load_dataset
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator

if os.path.exists("trained_model"):
    print("βœ… Model already exists. Skipping training.")
else:
    print("πŸš€ Starting training...")

    ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:100]")
    processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")

    def preprocess(ex):
        img = ex["image"].convert("RGB")
        inputs = processor(images=img, return_tensors="pt")
        labels = processor.tokenizer(ex["label"], truncation=True, padding="max_length", max_length=128).input_ids
        ex["pixel_values"] = inputs.pixel_values[0]
        ex["labels"] = labels
        return ex

    ds = ds.map(preprocess, remove_columns=["image", "label"])

    model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
    model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
    model.config.pad_token_id = processor.tokenizer.pad_token_id

    training_args = Seq2SeqTrainingArguments(
        output_dir="trained_model",
        per_device_train_batch_size=2,
        num_train_epochs=1,
        learning_rate=5e-5,
        logging_steps=10,
        save_steps=500,
        fp16=False,
        push_to_hub=False,
    )

    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=ds,
        tokenizer=processor.tokenizer,
        data_collator=default_data_collator,
    )

    trainer.train()
    print("βœ… Training completed")

    model.save_pretrained("trained_model")
    processor.save_pretrained("trained_model")
    print("βœ… Model saved to trained_model/")