Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,26 +1,39 @@
|
|
1 |
from datasets import load_dataset
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator
|
3 |
|
4 |
-
# Load the handwritten math dataset
|
5 |
ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:1000]")
|
6 |
|
|
|
7 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
|
|
8 |
|
|
|
9 |
def preprocess(ex):
|
10 |
img = ex["image"].convert("RGB")
|
11 |
inputs = processor(images=img, return_tensors="pt")
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
ex["pixel_values"] = inputs.pixel_values[0]
|
14 |
ex["labels"] = labels
|
15 |
return ex
|
16 |
|
|
|
17 |
ds = ds.map(preprocess, remove_columns=["image", "label"])
|
18 |
|
19 |
-
|
20 |
-
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
21 |
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
22 |
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
23 |
|
|
|
24 |
training_args = Seq2SeqTrainingArguments(
|
25 |
output_dir="trained_model",
|
26 |
per_device_train_batch_size=2,
|
@@ -32,6 +45,7 @@ training_args = Seq2SeqTrainingArguments(
|
|
32 |
push_to_hub=False,
|
33 |
)
|
34 |
|
|
|
35 |
trainer = Seq2SeqTrainer(
|
36 |
model=model,
|
37 |
args=training_args,
|
@@ -40,6 +54,10 @@ trainer = Seq2SeqTrainer(
|
|
40 |
data_collator=default_data_collator,
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
1 |
from datasets import load_dataset
|
2 |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator
|
3 |
|
4 |
+
# Load the handwritten math dataset (1000 examples)
|
5 |
ds = load_dataset("Azu/Handwritten-Mathematical-Expression-Convert-LaTeX", split="train[:1000]")
|
6 |
|
7 |
+
# Load processor and model
|
8 |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
|
9 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
10 |
|
11 |
+
# Preprocess function
|
12 |
def preprocess(ex):
|
13 |
img = ex["image"].convert("RGB")
|
14 |
inputs = processor(images=img, return_tensors="pt")
|
15 |
+
|
16 |
+
# Convert label index to actual LaTeX string
|
17 |
+
label_str = ds.features["label"].int2str(ex["label"])
|
18 |
+
labels = processor.tokenizer(
|
19 |
+
label_str,
|
20 |
+
truncation=True,
|
21 |
+
padding="max_length",
|
22 |
+
max_length=128
|
23 |
+
).input_ids
|
24 |
+
|
25 |
ex["pixel_values"] = inputs.pixel_values[0]
|
26 |
ex["labels"] = labels
|
27 |
return ex
|
28 |
|
29 |
+
# Apply preprocessing
|
30 |
ds = ds.map(preprocess, remove_columns=["image", "label"])
|
31 |
|
32 |
+
# Model config
|
|
|
33 |
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
|
34 |
model.config.pad_token_id = processor.tokenizer.pad_token_id
|
35 |
|
36 |
+
# Training arguments
|
37 |
training_args = Seq2SeqTrainingArguments(
|
38 |
output_dir="trained_model",
|
39 |
per_device_train_batch_size=2,
|
|
|
45 |
push_to_hub=False,
|
46 |
)
|
47 |
|
48 |
+
# Trainer
|
49 |
trainer = Seq2SeqTrainer(
|
50 |
model=model,
|
51 |
args=training_args,
|
|
|
54 |
data_collator=default_data_collator,
|
55 |
)
|
56 |
|
57 |
+
# Train and save
|
58 |
+
if __name__ == "__main__":
|
59 |
+
print("π Training started")
|
60 |
+
trainer.train()
|
61 |
+
print("β
Training completed")
|
62 |
+
model.save_pretrained("trained_model")
|
63 |
+
processor.save_pretrained("trained_model")
|