Spaces:
Runtime error
Runtime error
Upload run.py with huggingface_hub
Browse files
run.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from libs.base_utils import do_resize_content
|
3 |
+
from imagedream.ldm.util import (
|
4 |
+
instantiate_from_config,
|
5 |
+
get_obj_from_str,
|
6 |
+
)
|
7 |
+
from omegaconf import OmegaConf
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
from inference import generate3d
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
import json
|
13 |
+
import argparse
|
14 |
+
import shutil
|
15 |
+
from model import CRM
|
16 |
+
import PIL
|
17 |
+
import rembg
|
18 |
+
import os
|
19 |
+
from pipelines import TwoStagePipeline
|
20 |
+
|
21 |
+
rembg_session = rembg.new_session()
|
22 |
+
|
23 |
+
def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
24 |
+
# expand image to 1:1
|
25 |
+
width, height = image.size
|
26 |
+
if width == height:
|
27 |
+
return image
|
28 |
+
new_size = (max(width, height), max(width, height))
|
29 |
+
new_image = Image.new("RGBA", new_size, bg_color)
|
30 |
+
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
|
31 |
+
new_image.paste(image, paste_position)
|
32 |
+
return new_image
|
33 |
+
|
34 |
+
def remove_background(
|
35 |
+
image: PIL.Image.Image,
|
36 |
+
rembg_session = None,
|
37 |
+
force: bool = False,
|
38 |
+
**rembg_kwargs,
|
39 |
+
) -> PIL.Image.Image:
|
40 |
+
do_remove = True
|
41 |
+
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
|
42 |
+
# explain why current do not rm bg
|
43 |
+
print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
|
44 |
+
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
45 |
+
image = Image.alpha_composite(background, image)
|
46 |
+
do_remove = False
|
47 |
+
do_remove = do_remove or force
|
48 |
+
if do_remove:
|
49 |
+
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
|
50 |
+
return image
|
51 |
+
|
52 |
+
def do_resize_content(original_image: Image, scale_rate):
|
53 |
+
# resize image content wile retain the original image size
|
54 |
+
if scale_rate != 1:
|
55 |
+
# Calculate the new size after rescaling
|
56 |
+
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
57 |
+
# Resize the image while maintaining the aspect ratio
|
58 |
+
resized_image = original_image.resize(new_size)
|
59 |
+
# Create a new image with the original size and black background
|
60 |
+
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
61 |
+
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
62 |
+
padded_image.paste(resized_image, paste_position)
|
63 |
+
return padded_image
|
64 |
+
else:
|
65 |
+
return original_image
|
66 |
+
|
67 |
+
def add_background(image, bg_color=(255, 255, 255)):
|
68 |
+
# given an RGBA image, alpha channel is used as mask to add background color
|
69 |
+
background = Image.new("RGBA", image.size, bg_color)
|
70 |
+
return Image.alpha_composite(background, image)
|
71 |
+
|
72 |
+
|
73 |
+
def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
|
74 |
+
"""
|
75 |
+
input image is a pil image in RGBA, return RGB image
|
76 |
+
"""
|
77 |
+
print(background_choice)
|
78 |
+
if background_choice == "Alpha as mask":
|
79 |
+
background = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
80 |
+
image = Image.alpha_composite(background, image)
|
81 |
+
else:
|
82 |
+
image = remove_background(image, rembg_session, force_remove=True)
|
83 |
+
image = do_resize_content(image, foreground_ratio)
|
84 |
+
image = expand_to_square(image)
|
85 |
+
image = add_background(image, backgroud_color)
|
86 |
+
return image.convert("RGB")
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
|
90 |
+
parser = argparse.ArgumentParser()
|
91 |
+
parser.add_argument(
|
92 |
+
"--inputdir",
|
93 |
+
type=str,
|
94 |
+
default="examples/kunkun.webp",
|
95 |
+
help="dir for input image",
|
96 |
+
)
|
97 |
+
parser.add_argument(
|
98 |
+
"--scale",
|
99 |
+
type=float,
|
100 |
+
default=5.0,
|
101 |
+
)
|
102 |
+
parser.add_argument(
|
103 |
+
"--step",
|
104 |
+
type=int,
|
105 |
+
default=50,
|
106 |
+
)
|
107 |
+
parser.add_argument(
|
108 |
+
"--bg_choice",
|
109 |
+
type=str,
|
110 |
+
default="Auto Remove background",
|
111 |
+
help="[Auto Remove background] or [Alpha as mask]",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--outdir",
|
115 |
+
type=str,
|
116 |
+
default="out/",
|
117 |
+
)
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
|
121 |
+
img = Image.open(args.inputdir)
|
122 |
+
img = preprocess_image(img, args.bg_choice, 1.0, (127, 127, 127))
|
123 |
+
os.makedirs(args.outdir, exist_ok=True)
|
124 |
+
img.save(args.outdir+"preprocessed_image.png")
|
125 |
+
|
126 |
+
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
|
127 |
+
specs = json.load(open("configs/specs_objaverse_total.json"))
|
128 |
+
model = CRM(specs).to("cuda")
|
129 |
+
model.load_state_dict(torch.load(crm_path, map_location = "cuda"), strict=False)
|
130 |
+
|
131 |
+
stage1_config = OmegaConf.load("configs/nf7_v3_SNR_rd_size_stroke.yaml").config
|
132 |
+
stage2_config = OmegaConf.load("configs/stage2-v2-snr.yaml").config
|
133 |
+
stage2_sampler_config = stage2_config.sampler
|
134 |
+
stage1_sampler_config = stage1_config.sampler
|
135 |
+
|
136 |
+
stage1_model_config = stage1_config.models
|
137 |
+
stage2_model_config = stage2_config.models
|
138 |
+
|
139 |
+
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
|
140 |
+
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
|
141 |
+
stage1_model_config.resume = pixel_path
|
142 |
+
stage2_model_config.resume = xyz_path
|
143 |
+
|
144 |
+
pipeline = TwoStagePipeline(
|
145 |
+
stage1_model_config,
|
146 |
+
stage2_model_config,
|
147 |
+
stage1_sampler_config,
|
148 |
+
stage2_sampler_config,
|
149 |
+
)
|
150 |
+
|
151 |
+
rt_dict = pipeline(img, scale=args.scale, step=args.step)
|
152 |
+
stage1_images = rt_dict["stage1_images"]
|
153 |
+
stage2_images = rt_dict["stage2_images"]
|
154 |
+
np_imgs = np.concatenate(stage1_images, 1)
|
155 |
+
np_xyzs = np.concatenate(stage2_images, 1)
|
156 |
+
Image.fromarray(np_imgs).save(args.outdir+"pixel_images.png")
|
157 |
+
Image.fromarray(np_xyzs).save(args.outdir+"xyz_images.png")
|
158 |
+
|
159 |
+
glb_path, obj_path = generate3d(model, np_imgs, np_xyzs, "cuda")
|
160 |
+
shutil.copy(obj_path, args.outdir+"output3d.zip")
|