Mariam-Elz commited on
Commit
4562a05
·
verified ·
1 Parent(s): a320c78

Upload train_stage2.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. train_stage2.py +290 -0
train_stage2.py ADDED
@@ -0,0 +1,290 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ training script for imagedream
3
+ - the config system is similar with stable diffusion ldm code base(using omigaconf, yaml; target, params initialization, etc.)
4
+ - the training code base is similar with unidiffuser training code base using accelerate
5
+
6
+ concat channel as input, pred xyz value mapped pixedl as groundtruth
7
+ """
8
+ from omegaconf import OmegaConf
9
+ import argparse
10
+ import datetime
11
+ from pathlib import Path
12
+ from torch.utils.data import DataLoader
13
+ import os.path as osp
14
+ import numpy as np
15
+ import os
16
+ import torch
17
+ import wandb
18
+ from libs.base_utils import get_data_generator, PrintContext
19
+ from libs.base_utils import setup, instantiate_from_config, dct2str, add_prefix, get_obj_from_str
20
+ from absl import logging
21
+ from einops import rearrange
22
+ from libs.sample import ImageDreamDiffusion
23
+
24
+ def train(config, unk):
25
+ # using pipeline to extract models
26
+ accelerator, device = setup(config, unk)
27
+ with PrintContext(f"{'access STAT':-^50}", accelerator.is_main_process):
28
+ print(accelerator.state)
29
+ dtype = {
30
+ "fp16": torch.float16,
31
+ "fp32": torch.float32,
32
+ "no": torch.float32,
33
+ "bf16": torch.bfloat16,
34
+ }[accelerator.state.mixed_precision]
35
+ num_frames = config.num_frames
36
+
37
+
38
+ ################## load models ##################
39
+ model_config = config.models.config
40
+ model_config = OmegaConf.load(model_config)
41
+ model = instantiate_from_config(model_config.model)
42
+ state_dict = torch.load(config.models.resume, map_location="cpu")
43
+
44
+
45
+ model_in_conv_keys = ["model.diffusion_model.input_blocks.0.0.weight",]
46
+ in_conv_keys = ["diffusion_model.input_blocks.0.0.weight"]
47
+
48
+
49
+ def modify_keys(state_dict, in_keys, out_keys, cur_state_dict=None):
50
+ print("this function only for fuse channel model")
51
+ for in_key in in_keys:
52
+ p = state_dict[in_key]
53
+ if cur_state_dict is not None:
54
+ p_cur = cur_state_dict[in_key]
55
+ print(p_cur.shape, p.shape)
56
+ if p_cur.shape == p.shape:
57
+ print(f"skip {in_key} because of same shape")
58
+ continue
59
+ state_dict[in_key] = torch.cat([p, torch.zeros_like(p)], dim=1) * 0.5
60
+ for out_key in out_keys:
61
+ p = state_dict[out_key]
62
+ if cur_state_dict is not None:
63
+ p_cur = cur_state_dict[out_key]
64
+ print(p_cur.shape, p.shape)
65
+ if p_cur.shape == p.shape:
66
+ print(f"skip {out_key} because of same shape")
67
+ continue
68
+ state_dict[out_key] = torch.cat([p, torch.zeros_like(p)], dim=0)
69
+ return state_dict
70
+
71
+ def wipe_keys(state_dict, keys):
72
+ for key in keys:
73
+ state_dict.pop(key)
74
+ return state_dict
75
+
76
+ unet_config = model_config.model.params.unet_config
77
+ is_normal_inout_channel = not (unet_config.params.in_channels != 4 or unet_config.params.out_channels != 4)
78
+
79
+ if not is_normal_inout_channel:
80
+ state_dict = modify_keys(state_dict, model_in_conv_keys, [], model.state_dict())
81
+
82
+ print(model.load_state_dict(state_dict, strict=False))
83
+ print("loaded model from {}".format(config.models.resume))
84
+ if config.models.get("resume_unet", None) is not None:
85
+ unet_state_dict = torch.load(config.models.resume_unet, map_location="cpu")
86
+ if not is_normal_inout_channel:
87
+ unet_state_dict = modify_keys(unet_state_dict, in_conv_keys, [], model.model.state_dict())
88
+ print(model.model.load_state_dict(unet_state_dict, strict= False))
89
+ print(f"______ load unet from {config.models.resume_unet} ______")
90
+ model.to(device)
91
+ model.device = device
92
+ model.clip_model.device = device
93
+
94
+
95
+ ################# setup optimizer #################
96
+ from torch.optim import AdamW
97
+ from accelerate.utils import DummyOptim
98
+ optimizer_cls = (
99
+ AdamW
100
+ if accelerator.state.deepspeed_plugin is None
101
+ or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
102
+ else DummyOptim
103
+ )
104
+ optimizer = optimizer_cls(model.model.parameters(), **config.optimizer)
105
+
106
+ ################# prepare datasets #################
107
+ dataset = instantiate_from_config(config.train_data)
108
+ eval_dataset = instantiate_from_config(config.eval_data)
109
+
110
+ dl_config = config.dataloader
111
+ dataloader = DataLoader(dataset, **dl_config, batch_size=config.batch_size)
112
+
113
+ model, optimizer, dataloader, = accelerator.prepare(model, optimizer, dataloader)
114
+
115
+ generator = get_data_generator(dataloader, accelerator.is_main_process, "train")
116
+ if config.get("sampler", None) is not None:
117
+ sampler_cls = get_obj_from_str(config.sampler.target)
118
+ sampler = sampler_cls(model, device, dtype, **config.sampler.params)
119
+ else:
120
+ sampler = ImageDreamDiffusion(model, config.mode, num_frames, device, dtype, dataset.camera_views,
121
+ offset_noise=config.get("offset_noise", False),
122
+ ref_position=dataset.ref_position,
123
+ random_background=dataset.random_background,
124
+ resize_rate=dataset.resize_rate)
125
+
126
+ ################# evaluation code #################
127
+ def evaluation():
128
+ from PIL import Image
129
+ import numpy as np
130
+ return_ls = []
131
+ for i in range(accelerator.process_index, len(eval_dataset), accelerator.num_processes):
132
+ item = eval_dataset[i]
133
+ cond = item['cond']
134
+ images = sampler.diffuse("3D assets.", cond,
135
+ pixel_images=item["cond_raw_images"],
136
+ n_test=2)
137
+ images = np.concatenate(images, 0)
138
+ images = [Image.fromarray(images)]
139
+ return_ls.append(dict(images=images, ident=eval_dataset[i]['ident']))
140
+ return return_ls
141
+
142
+
143
+ global_step = 0
144
+ total_step = 0
145
+ log_step = 0
146
+ eval_step = 0
147
+ save_step = config.save_interval
148
+
149
+ unet = model.model
150
+ while True:
151
+ item = next(generator)
152
+ unet.train()
153
+ bs = item["clip_cond"].shape[0]
154
+ BS = bs * num_frames
155
+ item["clip_cond"] = item["clip_cond"].to(device).to(dtype)
156
+ item["vae_cond"] = item["vae_cond"].to(device).to(dtype)
157
+ camera_input = item["cameras"].to(device)
158
+ camera_input = camera_input.reshape((BS, camera_input.shape[-1]))
159
+
160
+ gd_type = config.get("gd_type", "pixel")
161
+ if gd_type == "pixel":
162
+ item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
163
+ gd = item["target_images_vae"]
164
+ elif gd_type == "xyz":
165
+ item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
166
+ item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
167
+ gd = item["target_images_xyz_vae"]
168
+ elif gd_type == "fusechannel":
169
+ item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
170
+ item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
171
+ gd = torch.cat((item["target_images_vae"], item["target_images_xyz_vae"]), dim=0)
172
+ else:
173
+ raise NotImplementedError
174
+
175
+ with torch.no_grad(), accelerator.autocast("cuda"):
176
+ ip_embed = model.clip_model.encode_image_with_transformer(item["clip_cond"])
177
+ ip_ = ip_embed.repeat_interleave(num_frames, dim=0)
178
+
179
+ ip_img = model.get_first_stage_encoding(model.encode_first_stage(item["vae_cond"]))
180
+
181
+ gd = rearrange(gd, "B F C H W -> (B F) C H W")
182
+ pixel_images = rearrange(item["target_images_vae"], "B F C H W -> (B F) C H W")
183
+ latent_target_images = model.get_first_stage_encoding(model.encode_first_stage(gd))
184
+ pixel_images = model.get_first_stage_encoding(model.encode_first_stage(pixel_images))
185
+
186
+ if gd_type == "fusechannel":
187
+ latent_target_images = rearrange(latent_target_images, "(B F) C H W -> B F C H W", B=bs * 2)
188
+ image_latent, xyz_latent = torch.chunk(latent_target_images, 2)
189
+ fused_channel_latent = torch.cat((image_latent, xyz_latent), dim=-3)
190
+ latent_target_images = rearrange(fused_channel_latent, "B F C H W -> (B F) C H W")
191
+
192
+
193
+ if item.get("captions", None) is not None:
194
+ caption_ls = np.array(item["caption"]).T.reshape((-1, BS)).squeeze()
195
+ prompt_cond = model.get_learned_conditioning(caption_ls)
196
+ elif item.get("caption", None) is not None:
197
+ prompt_cond = model.get_learned_conditioning(item["caption"])
198
+ prompt_cond = prompt_cond.repeat_interleave(num_frames, dim=0)
199
+ else:
200
+ prompt_cond = model.get_learned_conditioning(["3D assets."]).repeat(BS, 1, 1)
201
+ condition = {
202
+ "context": prompt_cond,
203
+ "ip": ip_,
204
+ # "ip_img": ip_img,
205
+ "camera": camera_input,
206
+ "pixel_images": pixel_images,
207
+ }
208
+
209
+ with torch.autocast("cuda"), accelerator.accumulate(model):
210
+ time_steps = torch.randint(0, model.num_timesteps, (BS,), device=device)
211
+ noise = torch.randn_like(latent_target_images, device=device)
212
+ x_noisy = model.q_sample(latent_target_images, time_steps, noise)
213
+ output = unet(x_noisy, time_steps, **condition, num_frames=num_frames)
214
+ loss = torch.nn.functional.mse_loss(noise, output)
215
+
216
+ accelerator.backward(loss)
217
+ optimizer.step()
218
+ optimizer.zero_grad()
219
+ global_step += 1
220
+
221
+
222
+
223
+ total_step = global_step * config.total_batch_size
224
+ if total_step > log_step:
225
+ metrics = dict(
226
+ loss = accelerator.gather(loss.detach().mean()).mean().item(),
227
+ scale = accelerator.scaler.get_scale() if accelerator.scaler is not None else -1
228
+ )
229
+ log_step += config.log_interval
230
+ if accelerator.is_main_process:
231
+ logging.info(dct2str(dict(step=total_step, **metrics)))
232
+ wandb.log(add_prefix(metrics, 'train'), step=total_step)
233
+
234
+ if total_step > save_step and accelerator.is_main_process:
235
+ logging.info("saving done")
236
+ torch.save(unet.state_dict(), osp.join(config.ckpt_root, f"unet-{total_step}"))
237
+ save_step += config.save_interval
238
+ logging.info("save done")
239
+
240
+ if total_step > eval_step:
241
+ logging.info("evaluationing")
242
+ unet.eval()
243
+ return_ls = evaluation()
244
+ cur_eval_base = osp.join(config.eval_root, f"{total_step:07d}")
245
+ os.makedirs(cur_eval_base, exist_ok=True)
246
+ wandb_image_ls = []
247
+ for item in return_ls:
248
+ for i, im in enumerate(item["images"]):
249
+ im.save(osp.join(cur_eval_base, f"{item['ident']}-{i:03d}-{accelerator.process_index}-.png"))
250
+ wandb_image_ls.append(wandb.Image(im, caption=f"{item['ident']}-{i:03d}-{accelerator.process_index}"))
251
+
252
+ wandb.log({"eval_samples": wandb_image_ls})
253
+ eval_step += config.eval_interval
254
+ logging.info("evaluation done")
255
+
256
+ accelerator.wait_for_everyone()
257
+ if total_step > config.max_step:
258
+ break
259
+
260
+
261
+ if __name__ == "__main__":
262
+ # load config from config path, then merge with cli args
263
+ parser = argparse.ArgumentParser()
264
+ parser.add_argument(
265
+ "--config", type=str, default="configs/nf7_v3_SNR_rd_size_stroke.yaml"
266
+ )
267
+ parser.add_argument(
268
+ "--logdir", type=str, default="train_logs", help="the dir to put logs"
269
+ )
270
+ parser.add_argument(
271
+ "--resume_workdir", type=str, default=None, help="specify to do resume"
272
+ )
273
+ args, unk = parser.parse_known_args()
274
+ print(args, unk)
275
+ config = OmegaConf.load(args.config)
276
+ if args.resume_workdir is not None:
277
+ assert osp.exists(args.resume_workdir), f"{args.resume_workdir} not exists"
278
+ config.config.workdir = args.resume_workdir
279
+ config.config.resume = True
280
+ OmegaConf.set_struct(config, True) # prevent adding new keys
281
+ cli_conf = OmegaConf.from_cli(unk)
282
+ config = OmegaConf.merge(config, cli_conf)
283
+ config = config.config
284
+ OmegaConf.set_struct(config, False)
285
+ config.logdir = args.logdir
286
+ config.config_name = Path(args.config).stem
287
+
288
+ train(config, unk)
289
+
290
+