Spaces:
Runtime error
Runtime error
Upload train_stage2.py with huggingface_hub
Browse files- train_stage2.py +290 -0
train_stage2.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
training script for imagedream
|
3 |
+
- the config system is similar with stable diffusion ldm code base(using omigaconf, yaml; target, params initialization, etc.)
|
4 |
+
- the training code base is similar with unidiffuser training code base using accelerate
|
5 |
+
|
6 |
+
concat channel as input, pred xyz value mapped pixedl as groundtruth
|
7 |
+
"""
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
import argparse
|
10 |
+
import datetime
|
11 |
+
from pathlib import Path
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
import os.path as osp
|
14 |
+
import numpy as np
|
15 |
+
import os
|
16 |
+
import torch
|
17 |
+
import wandb
|
18 |
+
from libs.base_utils import get_data_generator, PrintContext
|
19 |
+
from libs.base_utils import setup, instantiate_from_config, dct2str, add_prefix, get_obj_from_str
|
20 |
+
from absl import logging
|
21 |
+
from einops import rearrange
|
22 |
+
from libs.sample import ImageDreamDiffusion
|
23 |
+
|
24 |
+
def train(config, unk):
|
25 |
+
# using pipeline to extract models
|
26 |
+
accelerator, device = setup(config, unk)
|
27 |
+
with PrintContext(f"{'access STAT':-^50}", accelerator.is_main_process):
|
28 |
+
print(accelerator.state)
|
29 |
+
dtype = {
|
30 |
+
"fp16": torch.float16,
|
31 |
+
"fp32": torch.float32,
|
32 |
+
"no": torch.float32,
|
33 |
+
"bf16": torch.bfloat16,
|
34 |
+
}[accelerator.state.mixed_precision]
|
35 |
+
num_frames = config.num_frames
|
36 |
+
|
37 |
+
|
38 |
+
################## load models ##################
|
39 |
+
model_config = config.models.config
|
40 |
+
model_config = OmegaConf.load(model_config)
|
41 |
+
model = instantiate_from_config(model_config.model)
|
42 |
+
state_dict = torch.load(config.models.resume, map_location="cpu")
|
43 |
+
|
44 |
+
|
45 |
+
model_in_conv_keys = ["model.diffusion_model.input_blocks.0.0.weight",]
|
46 |
+
in_conv_keys = ["diffusion_model.input_blocks.0.0.weight"]
|
47 |
+
|
48 |
+
|
49 |
+
def modify_keys(state_dict, in_keys, out_keys, cur_state_dict=None):
|
50 |
+
print("this function only for fuse channel model")
|
51 |
+
for in_key in in_keys:
|
52 |
+
p = state_dict[in_key]
|
53 |
+
if cur_state_dict is not None:
|
54 |
+
p_cur = cur_state_dict[in_key]
|
55 |
+
print(p_cur.shape, p.shape)
|
56 |
+
if p_cur.shape == p.shape:
|
57 |
+
print(f"skip {in_key} because of same shape")
|
58 |
+
continue
|
59 |
+
state_dict[in_key] = torch.cat([p, torch.zeros_like(p)], dim=1) * 0.5
|
60 |
+
for out_key in out_keys:
|
61 |
+
p = state_dict[out_key]
|
62 |
+
if cur_state_dict is not None:
|
63 |
+
p_cur = cur_state_dict[out_key]
|
64 |
+
print(p_cur.shape, p.shape)
|
65 |
+
if p_cur.shape == p.shape:
|
66 |
+
print(f"skip {out_key} because of same shape")
|
67 |
+
continue
|
68 |
+
state_dict[out_key] = torch.cat([p, torch.zeros_like(p)], dim=0)
|
69 |
+
return state_dict
|
70 |
+
|
71 |
+
def wipe_keys(state_dict, keys):
|
72 |
+
for key in keys:
|
73 |
+
state_dict.pop(key)
|
74 |
+
return state_dict
|
75 |
+
|
76 |
+
unet_config = model_config.model.params.unet_config
|
77 |
+
is_normal_inout_channel = not (unet_config.params.in_channels != 4 or unet_config.params.out_channels != 4)
|
78 |
+
|
79 |
+
if not is_normal_inout_channel:
|
80 |
+
state_dict = modify_keys(state_dict, model_in_conv_keys, [], model.state_dict())
|
81 |
+
|
82 |
+
print(model.load_state_dict(state_dict, strict=False))
|
83 |
+
print("loaded model from {}".format(config.models.resume))
|
84 |
+
if config.models.get("resume_unet", None) is not None:
|
85 |
+
unet_state_dict = torch.load(config.models.resume_unet, map_location="cpu")
|
86 |
+
if not is_normal_inout_channel:
|
87 |
+
unet_state_dict = modify_keys(unet_state_dict, in_conv_keys, [], model.model.state_dict())
|
88 |
+
print(model.model.load_state_dict(unet_state_dict, strict= False))
|
89 |
+
print(f"______ load unet from {config.models.resume_unet} ______")
|
90 |
+
model.to(device)
|
91 |
+
model.device = device
|
92 |
+
model.clip_model.device = device
|
93 |
+
|
94 |
+
|
95 |
+
################# setup optimizer #################
|
96 |
+
from torch.optim import AdamW
|
97 |
+
from accelerate.utils import DummyOptim
|
98 |
+
optimizer_cls = (
|
99 |
+
AdamW
|
100 |
+
if accelerator.state.deepspeed_plugin is None
|
101 |
+
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
102 |
+
else DummyOptim
|
103 |
+
)
|
104 |
+
optimizer = optimizer_cls(model.model.parameters(), **config.optimizer)
|
105 |
+
|
106 |
+
################# prepare datasets #################
|
107 |
+
dataset = instantiate_from_config(config.train_data)
|
108 |
+
eval_dataset = instantiate_from_config(config.eval_data)
|
109 |
+
|
110 |
+
dl_config = config.dataloader
|
111 |
+
dataloader = DataLoader(dataset, **dl_config, batch_size=config.batch_size)
|
112 |
+
|
113 |
+
model, optimizer, dataloader, = accelerator.prepare(model, optimizer, dataloader)
|
114 |
+
|
115 |
+
generator = get_data_generator(dataloader, accelerator.is_main_process, "train")
|
116 |
+
if config.get("sampler", None) is not None:
|
117 |
+
sampler_cls = get_obj_from_str(config.sampler.target)
|
118 |
+
sampler = sampler_cls(model, device, dtype, **config.sampler.params)
|
119 |
+
else:
|
120 |
+
sampler = ImageDreamDiffusion(model, config.mode, num_frames, device, dtype, dataset.camera_views,
|
121 |
+
offset_noise=config.get("offset_noise", False),
|
122 |
+
ref_position=dataset.ref_position,
|
123 |
+
random_background=dataset.random_background,
|
124 |
+
resize_rate=dataset.resize_rate)
|
125 |
+
|
126 |
+
################# evaluation code #################
|
127 |
+
def evaluation():
|
128 |
+
from PIL import Image
|
129 |
+
import numpy as np
|
130 |
+
return_ls = []
|
131 |
+
for i in range(accelerator.process_index, len(eval_dataset), accelerator.num_processes):
|
132 |
+
item = eval_dataset[i]
|
133 |
+
cond = item['cond']
|
134 |
+
images = sampler.diffuse("3D assets.", cond,
|
135 |
+
pixel_images=item["cond_raw_images"],
|
136 |
+
n_test=2)
|
137 |
+
images = np.concatenate(images, 0)
|
138 |
+
images = [Image.fromarray(images)]
|
139 |
+
return_ls.append(dict(images=images, ident=eval_dataset[i]['ident']))
|
140 |
+
return return_ls
|
141 |
+
|
142 |
+
|
143 |
+
global_step = 0
|
144 |
+
total_step = 0
|
145 |
+
log_step = 0
|
146 |
+
eval_step = 0
|
147 |
+
save_step = config.save_interval
|
148 |
+
|
149 |
+
unet = model.model
|
150 |
+
while True:
|
151 |
+
item = next(generator)
|
152 |
+
unet.train()
|
153 |
+
bs = item["clip_cond"].shape[0]
|
154 |
+
BS = bs * num_frames
|
155 |
+
item["clip_cond"] = item["clip_cond"].to(device).to(dtype)
|
156 |
+
item["vae_cond"] = item["vae_cond"].to(device).to(dtype)
|
157 |
+
camera_input = item["cameras"].to(device)
|
158 |
+
camera_input = camera_input.reshape((BS, camera_input.shape[-1]))
|
159 |
+
|
160 |
+
gd_type = config.get("gd_type", "pixel")
|
161 |
+
if gd_type == "pixel":
|
162 |
+
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
|
163 |
+
gd = item["target_images_vae"]
|
164 |
+
elif gd_type == "xyz":
|
165 |
+
item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
|
166 |
+
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
|
167 |
+
gd = item["target_images_xyz_vae"]
|
168 |
+
elif gd_type == "fusechannel":
|
169 |
+
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
|
170 |
+
item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
|
171 |
+
gd = torch.cat((item["target_images_vae"], item["target_images_xyz_vae"]), dim=0)
|
172 |
+
else:
|
173 |
+
raise NotImplementedError
|
174 |
+
|
175 |
+
with torch.no_grad(), accelerator.autocast("cuda"):
|
176 |
+
ip_embed = model.clip_model.encode_image_with_transformer(item["clip_cond"])
|
177 |
+
ip_ = ip_embed.repeat_interleave(num_frames, dim=0)
|
178 |
+
|
179 |
+
ip_img = model.get_first_stage_encoding(model.encode_first_stage(item["vae_cond"]))
|
180 |
+
|
181 |
+
gd = rearrange(gd, "B F C H W -> (B F) C H W")
|
182 |
+
pixel_images = rearrange(item["target_images_vae"], "B F C H W -> (B F) C H W")
|
183 |
+
latent_target_images = model.get_first_stage_encoding(model.encode_first_stage(gd))
|
184 |
+
pixel_images = model.get_first_stage_encoding(model.encode_first_stage(pixel_images))
|
185 |
+
|
186 |
+
if gd_type == "fusechannel":
|
187 |
+
latent_target_images = rearrange(latent_target_images, "(B F) C H W -> B F C H W", B=bs * 2)
|
188 |
+
image_latent, xyz_latent = torch.chunk(latent_target_images, 2)
|
189 |
+
fused_channel_latent = torch.cat((image_latent, xyz_latent), dim=-3)
|
190 |
+
latent_target_images = rearrange(fused_channel_latent, "B F C H W -> (B F) C H W")
|
191 |
+
|
192 |
+
|
193 |
+
if item.get("captions", None) is not None:
|
194 |
+
caption_ls = np.array(item["caption"]).T.reshape((-1, BS)).squeeze()
|
195 |
+
prompt_cond = model.get_learned_conditioning(caption_ls)
|
196 |
+
elif item.get("caption", None) is not None:
|
197 |
+
prompt_cond = model.get_learned_conditioning(item["caption"])
|
198 |
+
prompt_cond = prompt_cond.repeat_interleave(num_frames, dim=0)
|
199 |
+
else:
|
200 |
+
prompt_cond = model.get_learned_conditioning(["3D assets."]).repeat(BS, 1, 1)
|
201 |
+
condition = {
|
202 |
+
"context": prompt_cond,
|
203 |
+
"ip": ip_,
|
204 |
+
# "ip_img": ip_img,
|
205 |
+
"camera": camera_input,
|
206 |
+
"pixel_images": pixel_images,
|
207 |
+
}
|
208 |
+
|
209 |
+
with torch.autocast("cuda"), accelerator.accumulate(model):
|
210 |
+
time_steps = torch.randint(0, model.num_timesteps, (BS,), device=device)
|
211 |
+
noise = torch.randn_like(latent_target_images, device=device)
|
212 |
+
x_noisy = model.q_sample(latent_target_images, time_steps, noise)
|
213 |
+
output = unet(x_noisy, time_steps, **condition, num_frames=num_frames)
|
214 |
+
loss = torch.nn.functional.mse_loss(noise, output)
|
215 |
+
|
216 |
+
accelerator.backward(loss)
|
217 |
+
optimizer.step()
|
218 |
+
optimizer.zero_grad()
|
219 |
+
global_step += 1
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
total_step = global_step * config.total_batch_size
|
224 |
+
if total_step > log_step:
|
225 |
+
metrics = dict(
|
226 |
+
loss = accelerator.gather(loss.detach().mean()).mean().item(),
|
227 |
+
scale = accelerator.scaler.get_scale() if accelerator.scaler is not None else -1
|
228 |
+
)
|
229 |
+
log_step += config.log_interval
|
230 |
+
if accelerator.is_main_process:
|
231 |
+
logging.info(dct2str(dict(step=total_step, **metrics)))
|
232 |
+
wandb.log(add_prefix(metrics, 'train'), step=total_step)
|
233 |
+
|
234 |
+
if total_step > save_step and accelerator.is_main_process:
|
235 |
+
logging.info("saving done")
|
236 |
+
torch.save(unet.state_dict(), osp.join(config.ckpt_root, f"unet-{total_step}"))
|
237 |
+
save_step += config.save_interval
|
238 |
+
logging.info("save done")
|
239 |
+
|
240 |
+
if total_step > eval_step:
|
241 |
+
logging.info("evaluationing")
|
242 |
+
unet.eval()
|
243 |
+
return_ls = evaluation()
|
244 |
+
cur_eval_base = osp.join(config.eval_root, f"{total_step:07d}")
|
245 |
+
os.makedirs(cur_eval_base, exist_ok=True)
|
246 |
+
wandb_image_ls = []
|
247 |
+
for item in return_ls:
|
248 |
+
for i, im in enumerate(item["images"]):
|
249 |
+
im.save(osp.join(cur_eval_base, f"{item['ident']}-{i:03d}-{accelerator.process_index}-.png"))
|
250 |
+
wandb_image_ls.append(wandb.Image(im, caption=f"{item['ident']}-{i:03d}-{accelerator.process_index}"))
|
251 |
+
|
252 |
+
wandb.log({"eval_samples": wandb_image_ls})
|
253 |
+
eval_step += config.eval_interval
|
254 |
+
logging.info("evaluation done")
|
255 |
+
|
256 |
+
accelerator.wait_for_everyone()
|
257 |
+
if total_step > config.max_step:
|
258 |
+
break
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
# load config from config path, then merge with cli args
|
263 |
+
parser = argparse.ArgumentParser()
|
264 |
+
parser.add_argument(
|
265 |
+
"--config", type=str, default="configs/nf7_v3_SNR_rd_size_stroke.yaml"
|
266 |
+
)
|
267 |
+
parser.add_argument(
|
268 |
+
"--logdir", type=str, default="train_logs", help="the dir to put logs"
|
269 |
+
)
|
270 |
+
parser.add_argument(
|
271 |
+
"--resume_workdir", type=str, default=None, help="specify to do resume"
|
272 |
+
)
|
273 |
+
args, unk = parser.parse_known_args()
|
274 |
+
print(args, unk)
|
275 |
+
config = OmegaConf.load(args.config)
|
276 |
+
if args.resume_workdir is not None:
|
277 |
+
assert osp.exists(args.resume_workdir), f"{args.resume_workdir} not exists"
|
278 |
+
config.config.workdir = args.resume_workdir
|
279 |
+
config.config.resume = True
|
280 |
+
OmegaConf.set_struct(config, True) # prevent adding new keys
|
281 |
+
cli_conf = OmegaConf.from_cli(unk)
|
282 |
+
config = OmegaConf.merge(config, cli_conf)
|
283 |
+
config = config.config
|
284 |
+
OmegaConf.set_struct(config, False)
|
285 |
+
config.logdir = args.logdir
|
286 |
+
config.config_name = Path(args.config).stem
|
287 |
+
|
288 |
+
train(config, unk)
|
289 |
+
|
290 |
+
|