Spaces:
Runtime error
Runtime error
Upload util/flexicubes_geometry.py with huggingface_hub
Browse files- util/flexicubes_geometry.py +116 -116
util/flexicubes_geometry.py
CHANGED
@@ -1,116 +1,116 @@
|
|
1 |
-
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
-
#
|
3 |
-
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
-
# and proprietary rights in and to this software, related documentation
|
5 |
-
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
-
# distribution of this software and related documentation without an express
|
7 |
-
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from util.flexicubes import FlexiCubes # replace later
|
11 |
-
# from dmtet import sdf_reg_loss_batch
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
def get_center_boundary_index(grid_res, device):
|
15 |
-
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
|
16 |
-
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
|
17 |
-
center_indices = torch.nonzero(v.reshape(-1))
|
18 |
-
|
19 |
-
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
|
20 |
-
v[:2, ...] = True
|
21 |
-
v[-2:, ...] = True
|
22 |
-
v[:, :2, ...] = True
|
23 |
-
v[:, -2:, ...] = True
|
24 |
-
v[:, :, :2] = True
|
25 |
-
v[:, :, -2:] = True
|
26 |
-
boundary_indices = torch.nonzero(v.reshape(-1))
|
27 |
-
return center_indices, boundary_indices
|
28 |
-
|
29 |
-
###############################################################################
|
30 |
-
# Geometry interface
|
31 |
-
###############################################################################
|
32 |
-
class FlexiCubesGeometry(object):
|
33 |
-
def __init__(
|
34 |
-
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
|
35 |
-
render_type='neural_render', args=None):
|
36 |
-
super(FlexiCubesGeometry, self).__init__()
|
37 |
-
self.grid_res = grid_res
|
38 |
-
self.device = device
|
39 |
-
self.args = args
|
40 |
-
self.fc = FlexiCubes(device, weight_scale=0.5)
|
41 |
-
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
|
42 |
-
if isinstance(scale, list):
|
43 |
-
self.verts[:, 0] = self.verts[:, 0] * scale[0]
|
44 |
-
self.verts[:, 1] = self.verts[:, 1] * scale[1]
|
45 |
-
self.verts[:, 2] = self.verts[:, 2] * scale[1]
|
46 |
-
else:
|
47 |
-
self.verts = self.verts * scale
|
48 |
-
|
49 |
-
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
|
50 |
-
self.all_edges = torch.unique(all_edges, dim=0)
|
51 |
-
|
52 |
-
# Parameters used for fix boundary sdf
|
53 |
-
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
|
54 |
-
self.renderer = renderer
|
55 |
-
self.render_type = render_type
|
56 |
-
|
57 |
-
def getAABB(self):
|
58 |
-
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
|
59 |
-
|
60 |
-
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
|
61 |
-
if indices is None:
|
62 |
-
indices = self.indices
|
63 |
-
|
64 |
-
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
|
65 |
-
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
|
66 |
-
gamma_f=weight_n[:, 20], training=is_training
|
67 |
-
)
|
68 |
-
return verts, faces, v_reg_loss
|
69 |
-
|
70 |
-
|
71 |
-
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
|
72 |
-
return_value = dict()
|
73 |
-
if self.render_type == 'neural_render':
|
74 |
-
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
|
75 |
-
mesh_v_nx3.unsqueeze(dim=0),
|
76 |
-
mesh_f_fx3.int(),
|
77 |
-
camera_mv_bx4x4,
|
78 |
-
mesh_v_nx3.unsqueeze(dim=0),
|
79 |
-
resolution=resolution,
|
80 |
-
device=self.device,
|
81 |
-
hierarchical_mask=hierarchical_mask
|
82 |
-
)
|
83 |
-
|
84 |
-
return_value['tex_pos'] = tex_pos
|
85 |
-
return_value['mask'] = mask
|
86 |
-
return_value['hard_mask'] = hard_mask
|
87 |
-
return_value['rast'] = rast
|
88 |
-
return_value['v_pos_clip'] = v_pos_clip
|
89 |
-
return_value['mask_pyramid'] = mask_pyramid
|
90 |
-
return_value['depth'] = depth
|
91 |
-
else:
|
92 |
-
raise NotImplementedError
|
93 |
-
|
94 |
-
return return_value
|
95 |
-
|
96 |
-
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
|
97 |
-
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
|
98 |
-
v_list = []
|
99 |
-
f_list = []
|
100 |
-
n_batch = v_deformed_bxnx3.shape[0]
|
101 |
-
all_render_output = []
|
102 |
-
for i_batch in range(n_batch):
|
103 |
-
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
|
104 |
-
v_list.append(verts_nx3)
|
105 |
-
f_list.append(faces_fx3)
|
106 |
-
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
|
107 |
-
all_render_output.append(render_output)
|
108 |
-
|
109 |
-
# Concatenate all render output
|
110 |
-
return_keys = all_render_output[0].keys()
|
111 |
-
return_value = dict()
|
112 |
-
for k in return_keys:
|
113 |
-
value = [v[k] for v in all_render_output]
|
114 |
-
return_value[k] = value
|
115 |
-
# We can do concatenation outside of the render
|
116 |
-
return return_value
|
|
|
1 |
+
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
#
|
3 |
+
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
|
4 |
+
# and proprietary rights in and to this software, related documentation
|
5 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
6 |
+
# distribution of this software and related documentation without an express
|
7 |
+
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from util.flexicubes import FlexiCubes # replace later
|
11 |
+
# from dmtet import sdf_reg_loss_batch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
def get_center_boundary_index(grid_res, device):
|
15 |
+
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device)
|
16 |
+
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True
|
17 |
+
center_indices = torch.nonzero(v.reshape(-1))
|
18 |
+
|
19 |
+
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False
|
20 |
+
v[:2, ...] = True
|
21 |
+
v[-2:, ...] = True
|
22 |
+
v[:, :2, ...] = True
|
23 |
+
v[:, -2:, ...] = True
|
24 |
+
v[:, :, :2] = True
|
25 |
+
v[:, :, -2:] = True
|
26 |
+
boundary_indices = torch.nonzero(v.reshape(-1))
|
27 |
+
return center_indices, boundary_indices
|
28 |
+
|
29 |
+
###############################################################################
|
30 |
+
# Geometry interface
|
31 |
+
###############################################################################
|
32 |
+
class FlexiCubesGeometry(object):
|
33 |
+
def __init__(
|
34 |
+
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
|
35 |
+
render_type='neural_render', args=None):
|
36 |
+
super(FlexiCubesGeometry, self).__init__()
|
37 |
+
self.grid_res = grid_res
|
38 |
+
self.device = device
|
39 |
+
self.args = args
|
40 |
+
self.fc = FlexiCubes(device, weight_scale=0.5)
|
41 |
+
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res)
|
42 |
+
if isinstance(scale, list):
|
43 |
+
self.verts[:, 0] = self.verts[:, 0] * scale[0]
|
44 |
+
self.verts[:, 1] = self.verts[:, 1] * scale[1]
|
45 |
+
self.verts[:, 2] = self.verts[:, 2] * scale[1]
|
46 |
+
else:
|
47 |
+
self.verts = self.verts * scale
|
48 |
+
|
49 |
+
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2)
|
50 |
+
self.all_edges = torch.unique(all_edges, dim=0)
|
51 |
+
|
52 |
+
# Parameters used for fix boundary sdf
|
53 |
+
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device)
|
54 |
+
self.renderer = renderer
|
55 |
+
self.render_type = render_type
|
56 |
+
|
57 |
+
def getAABB(self):
|
58 |
+
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
|
59 |
+
|
60 |
+
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False):
|
61 |
+
if indices is None:
|
62 |
+
indices = self.indices
|
63 |
+
|
64 |
+
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res,
|
65 |
+
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20],
|
66 |
+
gamma_f=weight_n[:, 20], training=is_training
|
67 |
+
)
|
68 |
+
return verts, faces, v_reg_loss
|
69 |
+
|
70 |
+
|
71 |
+
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
|
72 |
+
return_value = dict()
|
73 |
+
if self.render_type == 'neural_render':
|
74 |
+
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
|
75 |
+
mesh_v_nx3.unsqueeze(dim=0),
|
76 |
+
mesh_f_fx3.int(),
|
77 |
+
camera_mv_bx4x4,
|
78 |
+
mesh_v_nx3.unsqueeze(dim=0),
|
79 |
+
resolution=resolution,
|
80 |
+
device=self.device,
|
81 |
+
hierarchical_mask=hierarchical_mask
|
82 |
+
)
|
83 |
+
|
84 |
+
return_value['tex_pos'] = tex_pos
|
85 |
+
return_value['mask'] = mask
|
86 |
+
return_value['hard_mask'] = hard_mask
|
87 |
+
return_value['rast'] = rast
|
88 |
+
return_value['v_pos_clip'] = v_pos_clip
|
89 |
+
return_value['mask_pyramid'] = mask_pyramid
|
90 |
+
return_value['depth'] = depth
|
91 |
+
else:
|
92 |
+
raise NotImplementedError
|
93 |
+
|
94 |
+
return return_value
|
95 |
+
|
96 |
+
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
|
97 |
+
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
|
98 |
+
v_list = []
|
99 |
+
f_list = []
|
100 |
+
n_batch = v_deformed_bxnx3.shape[0]
|
101 |
+
all_render_output = []
|
102 |
+
for i_batch in range(n_batch):
|
103 |
+
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
|
104 |
+
v_list.append(verts_nx3)
|
105 |
+
f_list.append(faces_fx3)
|
106 |
+
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
|
107 |
+
all_render_output.append(render_output)
|
108 |
+
|
109 |
+
# Concatenate all render output
|
110 |
+
return_keys = all_render_output[0].keys()
|
111 |
+
return_value = dict()
|
112 |
+
for k in return_keys:
|
113 |
+
value = [v[k] for v in all_render_output]
|
114 |
+
return_value[k] = value
|
115 |
+
# We can do concatenation outside of the render
|
116 |
+
return return_value
|