Spaces:
Runtime error
Runtime error
Upload util/renderer.py with huggingface_hub
Browse files- util/renderer.py +48 -48
util/renderer.py
CHANGED
@@ -1,49 +1,49 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import nvdiffrast.torch as dr
|
5 |
-
from util.flexicubes_geometry import FlexiCubesGeometry
|
6 |
-
|
7 |
-
class Renderer(nn.Module):
|
8 |
-
def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
|
9 |
-
super().__init__()
|
10 |
-
|
11 |
-
self.tet_grid_size = tet_grid_size
|
12 |
-
self.camera_angle_num = camera_angle_num
|
13 |
-
self.scale = scale
|
14 |
-
self.geo_type = geo_type
|
15 |
-
|
16 |
-
|
17 |
-
if self.geo_type == "flex":
|
18 |
-
self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
|
19 |
-
|
20 |
-
def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
|
21 |
-
|
22 |
-
results = {}
|
23 |
-
|
24 |
-
deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
|
25 |
-
if self.geo_type == "flex":
|
26 |
-
deform = deform *0.5
|
27 |
-
|
28 |
-
v_deformed = verts + deform
|
29 |
-
|
30 |
-
verts_list = []
|
31 |
-
faces_list = []
|
32 |
-
reg_list = []
|
33 |
-
n_shape = verts.shape[0]
|
34 |
-
for i in range(n_shape):
|
35 |
-
verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
|
36 |
-
with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
|
37 |
-
|
38 |
-
verts_list.append(verts_i)
|
39 |
-
faces_list.append(faces_i)
|
40 |
-
reg_list.append(reg_i)
|
41 |
-
verts = verts_list
|
42 |
-
faces = faces_list
|
43 |
-
|
44 |
-
flexicubes_surface_reg = torch.cat(reg_list).mean()
|
45 |
-
flexicubes_weight_reg = (weight ** 2).mean()
|
46 |
-
results["flex_surf_loss"] = flexicubes_surface_reg
|
47 |
-
results["flex_weight_loss"] = flexicubes_weight_reg
|
48 |
-
|
49 |
return results, verts, faces
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import nvdiffrast.torch as dr
|
5 |
+
from util.flexicubes_geometry import FlexiCubesGeometry
|
6 |
+
|
7 |
+
class Renderer(nn.Module):
|
8 |
+
def __init__(self, tet_grid_size, camera_angle_num, scale, geo_type):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.tet_grid_size = tet_grid_size
|
12 |
+
self.camera_angle_num = camera_angle_num
|
13 |
+
self.scale = scale
|
14 |
+
self.geo_type = geo_type
|
15 |
+
self.glctx = dr.RasterizeCudaContext()
|
16 |
+
|
17 |
+
if self.geo_type == "flex":
|
18 |
+
self.flexicubes = FlexiCubesGeometry(grid_res = self.tet_grid_size)
|
19 |
+
|
20 |
+
def forward(self, data, sdf, deform, verts, tets, training=False, weight = None):
|
21 |
+
|
22 |
+
results = {}
|
23 |
+
|
24 |
+
deform = torch.tanh(deform) / self.tet_grid_size * self.scale / 0.95
|
25 |
+
if self.geo_type == "flex":
|
26 |
+
deform = deform *0.5
|
27 |
+
|
28 |
+
v_deformed = verts + deform
|
29 |
+
|
30 |
+
verts_list = []
|
31 |
+
faces_list = []
|
32 |
+
reg_list = []
|
33 |
+
n_shape = verts.shape[0]
|
34 |
+
for i in range(n_shape):
|
35 |
+
verts_i, faces_i, reg_i = self.flexicubes.get_mesh(v_deformed[i], sdf[i].squeeze(dim=-1),
|
36 |
+
with_uv=False, indices=tets, weight_n=weight[i], is_training=training)
|
37 |
+
|
38 |
+
verts_list.append(verts_i)
|
39 |
+
faces_list.append(faces_i)
|
40 |
+
reg_list.append(reg_i)
|
41 |
+
verts = verts_list
|
42 |
+
faces = faces_list
|
43 |
+
|
44 |
+
flexicubes_surface_reg = torch.cat(reg_list).mean()
|
45 |
+
flexicubes_weight_reg = (weight ** 2).mean()
|
46 |
+
results["flex_surf_loss"] = flexicubes_surface_reg
|
47 |
+
results["flex_weight_loss"] = flexicubes_weight_reg
|
48 |
+
|
49 |
return results, verts, faces
|