Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload model/archs/mlp_head.py with huggingface_hub
Browse files- model/archs/mlp_head.py +39 -39
    	
        model/archs/mlp_head.py
    CHANGED
    
    | @@ -1,40 +1,40 @@ | |
| 1 | 
            -
            import torch.nn as nn
         | 
| 2 | 
            -
            import torch.nn.functional as F
         | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
            class SdfMlp(nn.Module):
         | 
| 6 | 
            -
                def __init__(self, input_dim, hidden_dim=512, bias=True):
         | 
| 7 | 
            -
                    super().__init__()
         | 
| 8 | 
            -
                    self.input_dim = input_dim
         | 
| 9 | 
            -
                    self.hidden_dim = hidden_dim
         | 
| 10 | 
            -
             | 
| 11 | 
            -
                    self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
         | 
| 12 | 
            -
                    self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
         | 
| 13 | 
            -
                    self.fc3 = nn.Linear(hidden_dim, 4, bias=bias)
         | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
                def forward(self, input):
         | 
| 17 | 
            -
                    x = F.relu(self.fc1(input))
         | 
| 18 | 
            -
                    x = F.relu(self.fc2(x))
         | 
| 19 | 
            -
                    out = self.fc3(x)
         | 
| 20 | 
            -
                    return out
         | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
            class RgbMlp(nn.Module):
         | 
| 24 | 
            -
                def __init__(self, input_dim, hidden_dim=512, bias=True):
         | 
| 25 | 
            -
                    super().__init__()
         | 
| 26 | 
            -
                    self.input_dim = input_dim
         | 
| 27 | 
            -
                    self.hidden_dim = hidden_dim
         | 
| 28 | 
            -
             | 
| 29 | 
            -
                    self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
         | 
| 30 | 
            -
                    self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
         | 
| 31 | 
            -
                    self.fc3 = nn.Linear(hidden_dim, 3, bias=bias)
         | 
| 32 | 
            -
             | 
| 33 | 
            -
                def forward(self, input):
         | 
| 34 | 
            -
                    x = F.relu(self.fc1(input))
         | 
| 35 | 
            -
                    x = F.relu(self.fc2(x))
         | 
| 36 | 
            -
                    out = self.fc3(x)
         | 
| 37 | 
            -
             | 
| 38 | 
            -
                    return out
         | 
| 39 | 
            -
             | 
| 40 |  | 
|  | |
| 1 | 
            +
            import torch.nn as nn
         | 
| 2 | 
            +
            import torch.nn.functional as F
         | 
| 3 | 
            +
             | 
| 4 | 
            +
             | 
| 5 | 
            +
            class SdfMlp(nn.Module):
         | 
| 6 | 
            +
                def __init__(self, input_dim, hidden_dim=512, bias=True):
         | 
| 7 | 
            +
                    super().__init__()
         | 
| 8 | 
            +
                    self.input_dim = input_dim
         | 
| 9 | 
            +
                    self.hidden_dim = hidden_dim
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                    self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
         | 
| 12 | 
            +
                    self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
         | 
| 13 | 
            +
                    self.fc3 = nn.Linear(hidden_dim, 4, bias=bias)
         | 
| 14 | 
            +
             | 
| 15 | 
            +
             | 
| 16 | 
            +
                def forward(self, input):
         | 
| 17 | 
            +
                    x = F.relu(self.fc1(input))
         | 
| 18 | 
            +
                    x = F.relu(self.fc2(x))
         | 
| 19 | 
            +
                    out = self.fc3(x)
         | 
| 20 | 
            +
                    return out
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            class RgbMlp(nn.Module):
         | 
| 24 | 
            +
                def __init__(self, input_dim, hidden_dim=512, bias=True):
         | 
| 25 | 
            +
                    super().__init__()
         | 
| 26 | 
            +
                    self.input_dim = input_dim
         | 
| 27 | 
            +
                    self.hidden_dim = hidden_dim
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                    self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
         | 
| 30 | 
            +
                    self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
         | 
| 31 | 
            +
                    self.fc3 = nn.Linear(hidden_dim, 3, bias=bias)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                def forward(self, input):
         | 
| 34 | 
            +
                    x = F.relu(self.fc1(input))
         | 
| 35 | 
            +
                    x = F.relu(self.fc2(x))
         | 
| 36 | 
            +
                    out = self.fc3(x)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    return out
         | 
| 39 | 
            +
             | 
| 40 |  | 
