Spaces:
Runtime error
Runtime error
Upload model/archs/mlp_head.py with huggingface_hub
Browse files- model/archs/mlp_head.py +39 -39
model/archs/mlp_head.py
CHANGED
@@ -1,40 +1,40 @@
|
|
1 |
-
import torch.nn as nn
|
2 |
-
import torch.nn.functional as F
|
3 |
-
|
4 |
-
|
5 |
-
class SdfMlp(nn.Module):
|
6 |
-
def __init__(self, input_dim, hidden_dim=512, bias=True):
|
7 |
-
super().__init__()
|
8 |
-
self.input_dim = input_dim
|
9 |
-
self.hidden_dim = hidden_dim
|
10 |
-
|
11 |
-
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
|
12 |
-
self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
|
13 |
-
self.fc3 = nn.Linear(hidden_dim, 4, bias=bias)
|
14 |
-
|
15 |
-
|
16 |
-
def forward(self, input):
|
17 |
-
x = F.relu(self.fc1(input))
|
18 |
-
x = F.relu(self.fc2(x))
|
19 |
-
out = self.fc3(x)
|
20 |
-
return out
|
21 |
-
|
22 |
-
|
23 |
-
class RgbMlp(nn.Module):
|
24 |
-
def __init__(self, input_dim, hidden_dim=512, bias=True):
|
25 |
-
super().__init__()
|
26 |
-
self.input_dim = input_dim
|
27 |
-
self.hidden_dim = hidden_dim
|
28 |
-
|
29 |
-
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
|
30 |
-
self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
|
31 |
-
self.fc3 = nn.Linear(hidden_dim, 3, bias=bias)
|
32 |
-
|
33 |
-
def forward(self, input):
|
34 |
-
x = F.relu(self.fc1(input))
|
35 |
-
x = F.relu(self.fc2(x))
|
36 |
-
out = self.fc3(x)
|
37 |
-
|
38 |
-
return out
|
39 |
-
|
40 |
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
|
4 |
+
|
5 |
+
class SdfMlp(nn.Module):
|
6 |
+
def __init__(self, input_dim, hidden_dim=512, bias=True):
|
7 |
+
super().__init__()
|
8 |
+
self.input_dim = input_dim
|
9 |
+
self.hidden_dim = hidden_dim
|
10 |
+
|
11 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
|
12 |
+
self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
|
13 |
+
self.fc3 = nn.Linear(hidden_dim, 4, bias=bias)
|
14 |
+
|
15 |
+
|
16 |
+
def forward(self, input):
|
17 |
+
x = F.relu(self.fc1(input))
|
18 |
+
x = F.relu(self.fc2(x))
|
19 |
+
out = self.fc3(x)
|
20 |
+
return out
|
21 |
+
|
22 |
+
|
23 |
+
class RgbMlp(nn.Module):
|
24 |
+
def __init__(self, input_dim, hidden_dim=512, bias=True):
|
25 |
+
super().__init__()
|
26 |
+
self.input_dim = input_dim
|
27 |
+
self.hidden_dim = hidden_dim
|
28 |
+
|
29 |
+
self.fc1 = nn.Linear(input_dim, hidden_dim, bias=bias)
|
30 |
+
self.fc2 = nn.Linear(hidden_dim, hidden_dim, bias=bias)
|
31 |
+
self.fc3 = nn.Linear(hidden_dim, 3, bias=bias)
|
32 |
+
|
33 |
+
def forward(self, input):
|
34 |
+
x = F.relu(self.fc1(input))
|
35 |
+
x = F.relu(self.fc2(x))
|
36 |
+
out = self.fc3(x)
|
37 |
+
|
38 |
+
return out
|
39 |
+
|
40 |
|