Spaces:
Runtime error
Runtime error
Upload libs/sample.py with huggingface_hub
Browse files- libs/sample.py +380 -380
libs/sample.py
CHANGED
@@ -1,380 +1,380 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
from imagedream.camera_utils import get_camera_for_index
|
4 |
-
from imagedream.ldm.util import set_seed, add_random_background
|
5 |
-
from libs.base_utils import do_resize_content
|
6 |
-
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
|
7 |
-
from torchvision import transforms as T
|
8 |
-
|
9 |
-
|
10 |
-
class ImageDreamDiffusion:
|
11 |
-
def __init__(
|
12 |
-
self,
|
13 |
-
model,
|
14 |
-
device,
|
15 |
-
dtype,
|
16 |
-
mode,
|
17 |
-
num_frames,
|
18 |
-
camera_views,
|
19 |
-
ref_position,
|
20 |
-
random_background=False,
|
21 |
-
offset_noise=False,
|
22 |
-
resize_rate=1,
|
23 |
-
image_size=256,
|
24 |
-
seed=1234,
|
25 |
-
) -> None:
|
26 |
-
assert mode in ["pixel", "local"]
|
27 |
-
size = image_size
|
28 |
-
self.seed = seed
|
29 |
-
batch_size = max(4, num_frames)
|
30 |
-
|
31 |
-
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
32 |
-
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
33 |
-
sampler = DDIMSampler(model)
|
34 |
-
|
35 |
-
# pre-compute camera matrices
|
36 |
-
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
37 |
-
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
38 |
-
camera = torch.stack(camera)
|
39 |
-
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
40 |
-
|
41 |
-
self.image_transform = T.Compose(
|
42 |
-
[
|
43 |
-
T.Resize((size, size)),
|
44 |
-
T.ToTensor(),
|
45 |
-
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
46 |
-
]
|
47 |
-
)
|
48 |
-
self.dtype = dtype
|
49 |
-
self.ref_position = ref_position
|
50 |
-
self.mode = mode
|
51 |
-
self.random_background = random_background
|
52 |
-
self.resize_rate = resize_rate
|
53 |
-
self.num_frames = num_frames
|
54 |
-
self.size = size
|
55 |
-
self.device = device
|
56 |
-
self.batch_size = batch_size
|
57 |
-
self.model = model
|
58 |
-
self.sampler = sampler
|
59 |
-
self.uc = uc
|
60 |
-
self.camera = camera
|
61 |
-
self.offset_noise = offset_noise
|
62 |
-
|
63 |
-
@staticmethod
|
64 |
-
def i2i(
|
65 |
-
model,
|
66 |
-
image_size,
|
67 |
-
prompt,
|
68 |
-
uc,
|
69 |
-
sampler,
|
70 |
-
ip=None,
|
71 |
-
step=20,
|
72 |
-
scale=5.0,
|
73 |
-
batch_size=8,
|
74 |
-
ddim_eta=0.0,
|
75 |
-
dtype=torch.float32,
|
76 |
-
device="cuda",
|
77 |
-
camera=None,
|
78 |
-
num_frames=4,
|
79 |
-
pixel_control=False,
|
80 |
-
transform=None,
|
81 |
-
offset_noise=False,
|
82 |
-
):
|
83 |
-
""" The function supports additional image prompt.
|
84 |
-
Args:
|
85 |
-
model (_type_): the image dream model
|
86 |
-
image_size (_type_): size of diffusion output (standard 256)
|
87 |
-
prompt (_type_): text prompt for the image (prompt in type str)
|
88 |
-
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
|
89 |
-
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
|
90 |
-
ip (Image, optional): the image prompt. Defaults to None.
|
91 |
-
step (int, optional): _description_. Defaults to 20.
|
92 |
-
scale (float, optional): _description_. Defaults to 7.5.
|
93 |
-
batch_size (int, optional): _description_. Defaults to 8.
|
94 |
-
ddim_eta (float, optional): _description_. Defaults to 0.0.
|
95 |
-
dtype (_type_, optional): _description_. Defaults to torch.float32.
|
96 |
-
device (str, optional): _description_. Defaults to "cuda".
|
97 |
-
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
98 |
-
num_frames (int, optional): _num of frames (views) to generate
|
99 |
-
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
|
100 |
-
transform: Compose(
|
101 |
-
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
|
102 |
-
ToTensor()
|
103 |
-
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
104 |
-
)
|
105 |
-
"""
|
106 |
-
ip_raw = ip
|
107 |
-
if type(prompt) != list:
|
108 |
-
prompt = [prompt]
|
109 |
-
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
110 |
-
c = model.get_learned_conditioning(prompt).to(
|
111 |
-
device
|
112 |
-
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
113 |
-
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
114 |
-
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
115 |
-
|
116 |
-
if camera is not None:
|
117 |
-
c_["camera"] = uc_["camera"] = (
|
118 |
-
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
119 |
-
)
|
120 |
-
c_["num_frames"] = uc_["num_frames"] = num_frames
|
121 |
-
|
122 |
-
if ip is not None:
|
123 |
-
ip_embed = model.get_learned_image_conditioning(ip).to(
|
124 |
-
device
|
125 |
-
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
126 |
-
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
127 |
-
c_["ip"] = ip_
|
128 |
-
uc_["ip"] = torch.zeros_like(ip_)
|
129 |
-
|
130 |
-
if pixel_control:
|
131 |
-
assert camera is not None
|
132 |
-
ip = transform(ip).to(
|
133 |
-
device
|
134 |
-
) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00
|
135 |
-
ip_img = model.get_first_stage_encoding(
|
136 |
-
model.encode_first_stage(ip[None, :, :, :])
|
137 |
-
) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55
|
138 |
-
c_["ip_img"] = ip_img
|
139 |
-
uc_["ip_img"] = torch.zeros_like(ip_img)
|
140 |
-
|
141 |
-
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
142 |
-
if offset_noise:
|
143 |
-
ref = transform(ip_raw).to(device)
|
144 |
-
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
145 |
-
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
146 |
-
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
147 |
-
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
148 |
-
|
149 |
-
samples_ddim, _ = (
|
150 |
-
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
151 |
-
S=step,
|
152 |
-
conditioning=c_,
|
153 |
-
batch_size=batch_size,
|
154 |
-
shape=shape,
|
155 |
-
verbose=False,
|
156 |
-
unconditional_guidance_scale=scale,
|
157 |
-
unconditional_conditioning=uc_,
|
158 |
-
eta=ddim_eta,
|
159 |
-
x_T=x_T if offset_noise else None,
|
160 |
-
)
|
161 |
-
)
|
162 |
-
|
163 |
-
x_sample = model.decode_first_stage(samples_ddim)
|
164 |
-
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
165 |
-
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
166 |
-
|
167 |
-
return list(x_sample.astype(np.uint8))
|
168 |
-
|
169 |
-
def diffuse(self, t, ip, n_test=2):
|
170 |
-
set_seed(self.seed)
|
171 |
-
ip = do_resize_content(ip, self.resize_rate)
|
172 |
-
if self.random_background:
|
173 |
-
ip = add_random_background(ip)
|
174 |
-
|
175 |
-
images = []
|
176 |
-
for _ in range(n_test):
|
177 |
-
img = self.i2i(
|
178 |
-
self.model,
|
179 |
-
self.size,
|
180 |
-
t,
|
181 |
-
self.uc,
|
182 |
-
self.sampler,
|
183 |
-
ip=ip,
|
184 |
-
step=50,
|
185 |
-
scale=5,
|
186 |
-
batch_size=self.batch_size,
|
187 |
-
ddim_eta=0.0,
|
188 |
-
dtype=self.dtype,
|
189 |
-
device=self.device,
|
190 |
-
camera=self.camera,
|
191 |
-
num_frames=self.num_frames,
|
192 |
-
pixel_control=(self.mode == "pixel"),
|
193 |
-
transform=self.image_transform,
|
194 |
-
offset_noise=self.offset_noise,
|
195 |
-
)
|
196 |
-
img = np.concatenate(img, 1)
|
197 |
-
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
|
198 |
-
images.append(img)
|
199 |
-
set_seed() # unset random and numpy seed
|
200 |
-
return images
|
201 |
-
|
202 |
-
|
203 |
-
class ImageDreamDiffusionStage2:
|
204 |
-
def __init__(
|
205 |
-
self,
|
206 |
-
model,
|
207 |
-
device,
|
208 |
-
dtype,
|
209 |
-
num_frames,
|
210 |
-
camera_views,
|
211 |
-
ref_position,
|
212 |
-
random_background=False,
|
213 |
-
offset_noise=False,
|
214 |
-
resize_rate=1,
|
215 |
-
mode="pixel",
|
216 |
-
image_size=256,
|
217 |
-
seed=1234,
|
218 |
-
) -> None:
|
219 |
-
assert mode in ["pixel", "local"]
|
220 |
-
|
221 |
-
size = image_size
|
222 |
-
self.seed = seed
|
223 |
-
batch_size = max(4, num_frames)
|
224 |
-
|
225 |
-
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
226 |
-
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
227 |
-
sampler = DDIMSampler(model)
|
228 |
-
|
229 |
-
# pre-compute camera matrices
|
230 |
-
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
231 |
-
if ref_position is not None:
|
232 |
-
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
233 |
-
camera = torch.stack(camera)
|
234 |
-
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
235 |
-
|
236 |
-
self.image_transform = T.Compose(
|
237 |
-
[
|
238 |
-
T.Resize((size, size)),
|
239 |
-
T.ToTensor(),
|
240 |
-
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
241 |
-
]
|
242 |
-
)
|
243 |
-
|
244 |
-
self.dtype = dtype
|
245 |
-
self.mode = mode
|
246 |
-
self.ref_position = ref_position
|
247 |
-
self.random_background = random_background
|
248 |
-
self.resize_rate = resize_rate
|
249 |
-
self.num_frames = num_frames
|
250 |
-
self.size = size
|
251 |
-
self.device = device
|
252 |
-
self.batch_size = batch_size
|
253 |
-
self.model = model
|
254 |
-
self.sampler = sampler
|
255 |
-
self.uc = uc
|
256 |
-
self.camera = camera
|
257 |
-
self.offset_noise = offset_noise
|
258 |
-
|
259 |
-
@staticmethod
|
260 |
-
def i2iStage2(
|
261 |
-
model,
|
262 |
-
image_size,
|
263 |
-
prompt,
|
264 |
-
uc,
|
265 |
-
sampler,
|
266 |
-
pixel_images,
|
267 |
-
ip=None,
|
268 |
-
step=20,
|
269 |
-
scale=5.0,
|
270 |
-
batch_size=8,
|
271 |
-
ddim_eta=0.0,
|
272 |
-
dtype=torch.float32,
|
273 |
-
device="cuda",
|
274 |
-
camera=None,
|
275 |
-
num_frames=4,
|
276 |
-
pixel_control=False,
|
277 |
-
transform=None,
|
278 |
-
offset_noise=False,
|
279 |
-
):
|
280 |
-
ip_raw = ip
|
281 |
-
if type(prompt) != list:
|
282 |
-
prompt = [prompt]
|
283 |
-
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
284 |
-
c = model.get_learned_conditioning(prompt).to(
|
285 |
-
device
|
286 |
-
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
287 |
-
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
288 |
-
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
289 |
-
|
290 |
-
if camera is not None:
|
291 |
-
c_["camera"] = uc_["camera"] = (
|
292 |
-
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
293 |
-
)
|
294 |
-
c_["num_frames"] = uc_["num_frames"] = num_frames
|
295 |
-
|
296 |
-
if ip is not None:
|
297 |
-
ip_embed = model.get_learned_image_conditioning(ip).to(
|
298 |
-
device
|
299 |
-
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
300 |
-
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
301 |
-
c_["ip"] = ip_
|
302 |
-
uc_["ip"] = torch.zeros_like(ip_)
|
303 |
-
|
304 |
-
if pixel_control:
|
305 |
-
assert camera is not None
|
306 |
-
|
307 |
-
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
|
308 |
-
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))
|
309 |
-
|
310 |
-
c_["pixel_images"] = latent_pixel_images
|
311 |
-
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)
|
312 |
-
|
313 |
-
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
314 |
-
if offset_noise:
|
315 |
-
ref = transform(ip_raw).to(device)
|
316 |
-
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
317 |
-
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
318 |
-
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
319 |
-
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
320 |
-
|
321 |
-
samples_ddim, _ = (
|
322 |
-
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
323 |
-
S=step,
|
324 |
-
conditioning=c_,
|
325 |
-
batch_size=batch_size,
|
326 |
-
shape=shape,
|
327 |
-
verbose=False,
|
328 |
-
unconditional_guidance_scale=scale,
|
329 |
-
unconditional_conditioning=uc_,
|
330 |
-
eta=ddim_eta,
|
331 |
-
x_T=x_T if offset_noise else None,
|
332 |
-
)
|
333 |
-
)
|
334 |
-
x_sample = model.decode_first_stage(samples_ddim)
|
335 |
-
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
336 |
-
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
337 |
-
|
338 |
-
return list(x_sample.astype(np.uint8))
|
339 |
-
|
340 |
-
@torch.no_grad()
|
341 |
-
def diffuse(self, t, ip, pixel_images, n_test=2):
|
342 |
-
set_seed(self.seed)
|
343 |
-
ip = do_resize_content(ip, self.resize_rate)
|
344 |
-
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]
|
345 |
-
|
346 |
-
if self.random_background:
|
347 |
-
bg_color = np.random.rand() * 255
|
348 |
-
ip = add_random_background(ip, bg_color)
|
349 |
-
pixel_images = [add_random_background(i, bg_color) for i in pixel_images]
|
350 |
-
|
351 |
-
images = []
|
352 |
-
for _ in range(n_test):
|
353 |
-
img = self.i2iStage2(
|
354 |
-
self.model,
|
355 |
-
self.size,
|
356 |
-
t,
|
357 |
-
self.uc,
|
358 |
-
self.sampler,
|
359 |
-
pixel_images=pixel_images,
|
360 |
-
ip=ip,
|
361 |
-
step=50,
|
362 |
-
scale=5,
|
363 |
-
batch_size=self.batch_size,
|
364 |
-
ddim_eta=0.0,
|
365 |
-
dtype=self.dtype,
|
366 |
-
device=self.device,
|
367 |
-
camera=self.camera,
|
368 |
-
num_frames=self.num_frames,
|
369 |
-
pixel_control=(self.mode == "pixel"),
|
370 |
-
transform=self.image_transform,
|
371 |
-
offset_noise=self.offset_noise,
|
372 |
-
)
|
373 |
-
img = np.concatenate(img, 1)
|
374 |
-
img = np.concatenate(
|
375 |
-
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
|
376 |
-
axis=1,
|
377 |
-
)
|
378 |
-
images.append(img)
|
379 |
-
set_seed() # unset random and numpy seed
|
380 |
-
return images
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from imagedream.camera_utils import get_camera_for_index
|
4 |
+
from imagedream.ldm.util import set_seed, add_random_background
|
5 |
+
from libs.base_utils import do_resize_content
|
6 |
+
from imagedream.ldm.models.diffusion.ddim import DDIMSampler
|
7 |
+
from torchvision import transforms as T
|
8 |
+
|
9 |
+
|
10 |
+
class ImageDreamDiffusion:
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
model,
|
14 |
+
device,
|
15 |
+
dtype,
|
16 |
+
mode,
|
17 |
+
num_frames,
|
18 |
+
camera_views,
|
19 |
+
ref_position,
|
20 |
+
random_background=False,
|
21 |
+
offset_noise=False,
|
22 |
+
resize_rate=1,
|
23 |
+
image_size=256,
|
24 |
+
seed=1234,
|
25 |
+
) -> None:
|
26 |
+
assert mode in ["pixel", "local"]
|
27 |
+
size = image_size
|
28 |
+
self.seed = seed
|
29 |
+
batch_size = max(4, num_frames)
|
30 |
+
|
31 |
+
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
32 |
+
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
33 |
+
sampler = DDIMSampler(model)
|
34 |
+
|
35 |
+
# pre-compute camera matrices
|
36 |
+
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
37 |
+
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
38 |
+
camera = torch.stack(camera)
|
39 |
+
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
40 |
+
|
41 |
+
self.image_transform = T.Compose(
|
42 |
+
[
|
43 |
+
T.Resize((size, size)),
|
44 |
+
T.ToTensor(),
|
45 |
+
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
46 |
+
]
|
47 |
+
)
|
48 |
+
self.dtype = dtype
|
49 |
+
self.ref_position = ref_position
|
50 |
+
self.mode = mode
|
51 |
+
self.random_background = random_background
|
52 |
+
self.resize_rate = resize_rate
|
53 |
+
self.num_frames = num_frames
|
54 |
+
self.size = size
|
55 |
+
self.device = device
|
56 |
+
self.batch_size = batch_size
|
57 |
+
self.model = model
|
58 |
+
self.sampler = sampler
|
59 |
+
self.uc = uc
|
60 |
+
self.camera = camera
|
61 |
+
self.offset_noise = offset_noise
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def i2i(
|
65 |
+
model,
|
66 |
+
image_size,
|
67 |
+
prompt,
|
68 |
+
uc,
|
69 |
+
sampler,
|
70 |
+
ip=None,
|
71 |
+
step=20,
|
72 |
+
scale=5.0,
|
73 |
+
batch_size=8,
|
74 |
+
ddim_eta=0.0,
|
75 |
+
dtype=torch.float32,
|
76 |
+
device="cuda",
|
77 |
+
camera=None,
|
78 |
+
num_frames=4,
|
79 |
+
pixel_control=False,
|
80 |
+
transform=None,
|
81 |
+
offset_noise=False,
|
82 |
+
):
|
83 |
+
""" The function supports additional image prompt.
|
84 |
+
Args:
|
85 |
+
model (_type_): the image dream model
|
86 |
+
image_size (_type_): size of diffusion output (standard 256)
|
87 |
+
prompt (_type_): text prompt for the image (prompt in type str)
|
88 |
+
uc (_type_): unconditional vector (tensor in shape [1, 77, 1024])
|
89 |
+
sampler (_type_): imagedream.ldm.models.diffusion.ddim.DDIMSampler
|
90 |
+
ip (Image, optional): the image prompt. Defaults to None.
|
91 |
+
step (int, optional): _description_. Defaults to 20.
|
92 |
+
scale (float, optional): _description_. Defaults to 7.5.
|
93 |
+
batch_size (int, optional): _description_. Defaults to 8.
|
94 |
+
ddim_eta (float, optional): _description_. Defaults to 0.0.
|
95 |
+
dtype (_type_, optional): _description_. Defaults to torch.float32.
|
96 |
+
device (str, optional): _description_. Defaults to "cuda".
|
97 |
+
camera (_type_, optional): camera info in tensor, shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
98 |
+
num_frames (int, optional): _num of frames (views) to generate
|
99 |
+
pixel_control: whether to use pixel conditioning. Defaults to False, True when using pixel mode
|
100 |
+
transform: Compose(
|
101 |
+
Resize(size=(256, 256), interpolation=bilinear, max_size=None, antialias=warn)
|
102 |
+
ToTensor()
|
103 |
+
Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
|
104 |
+
)
|
105 |
+
"""
|
106 |
+
ip_raw = ip
|
107 |
+
if type(prompt) != list:
|
108 |
+
prompt = [prompt]
|
109 |
+
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
110 |
+
c = model.get_learned_conditioning(prompt).to(
|
111 |
+
device
|
112 |
+
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
113 |
+
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
114 |
+
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
115 |
+
|
116 |
+
if camera is not None:
|
117 |
+
c_["camera"] = uc_["camera"] = (
|
118 |
+
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
119 |
+
)
|
120 |
+
c_["num_frames"] = uc_["num_frames"] = num_frames
|
121 |
+
|
122 |
+
if ip is not None:
|
123 |
+
ip_embed = model.get_learned_image_conditioning(ip).to(
|
124 |
+
device
|
125 |
+
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
126 |
+
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
127 |
+
c_["ip"] = ip_
|
128 |
+
uc_["ip"] = torch.zeros_like(ip_)
|
129 |
+
|
130 |
+
if pixel_control:
|
131 |
+
assert camera is not None
|
132 |
+
ip = transform(ip).to(
|
133 |
+
device
|
134 |
+
) # shape: torch.Size([3, 256, 256]) mean: 0.33, std: 0.37, min: -1.00, max: 1.00
|
135 |
+
ip_img = model.get_first_stage_encoding(
|
136 |
+
model.encode_first_stage(ip[None, :, :, :])
|
137 |
+
) # shape: torch.Size([1, 4, 32, 32]) mean: 0.23, std: 0.77, min: -4.42, max: 3.55
|
138 |
+
c_["ip_img"] = ip_img
|
139 |
+
uc_["ip_img"] = torch.zeros_like(ip_img)
|
140 |
+
|
141 |
+
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
142 |
+
if offset_noise:
|
143 |
+
ref = transform(ip_raw).to(device)
|
144 |
+
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
145 |
+
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
146 |
+
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
147 |
+
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
148 |
+
|
149 |
+
samples_ddim, _ = (
|
150 |
+
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
151 |
+
S=step,
|
152 |
+
conditioning=c_,
|
153 |
+
batch_size=batch_size,
|
154 |
+
shape=shape,
|
155 |
+
verbose=False,
|
156 |
+
unconditional_guidance_scale=scale,
|
157 |
+
unconditional_conditioning=uc_,
|
158 |
+
eta=ddim_eta,
|
159 |
+
x_T=x_T if offset_noise else None,
|
160 |
+
)
|
161 |
+
)
|
162 |
+
|
163 |
+
x_sample = model.decode_first_stage(samples_ddim)
|
164 |
+
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
165 |
+
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
166 |
+
|
167 |
+
return list(x_sample.astype(np.uint8))
|
168 |
+
|
169 |
+
def diffuse(self, t, ip, n_test=2):
|
170 |
+
set_seed(self.seed)
|
171 |
+
ip = do_resize_content(ip, self.resize_rate)
|
172 |
+
if self.random_background:
|
173 |
+
ip = add_random_background(ip)
|
174 |
+
|
175 |
+
images = []
|
176 |
+
for _ in range(n_test):
|
177 |
+
img = self.i2i(
|
178 |
+
self.model,
|
179 |
+
self.size,
|
180 |
+
t,
|
181 |
+
self.uc,
|
182 |
+
self.sampler,
|
183 |
+
ip=ip,
|
184 |
+
step=50,
|
185 |
+
scale=5,
|
186 |
+
batch_size=self.batch_size,
|
187 |
+
ddim_eta=0.0,
|
188 |
+
dtype=self.dtype,
|
189 |
+
device=self.device,
|
190 |
+
camera=self.camera,
|
191 |
+
num_frames=self.num_frames,
|
192 |
+
pixel_control=(self.mode == "pixel"),
|
193 |
+
transform=self.image_transform,
|
194 |
+
offset_noise=self.offset_noise,
|
195 |
+
)
|
196 |
+
img = np.concatenate(img, 1)
|
197 |
+
img = np.concatenate((img, ip.resize((self.size, self.size))), axis=1)
|
198 |
+
images.append(img)
|
199 |
+
set_seed() # unset random and numpy seed
|
200 |
+
return images
|
201 |
+
|
202 |
+
|
203 |
+
class ImageDreamDiffusionStage2:
|
204 |
+
def __init__(
|
205 |
+
self,
|
206 |
+
model,
|
207 |
+
device,
|
208 |
+
dtype,
|
209 |
+
num_frames,
|
210 |
+
camera_views,
|
211 |
+
ref_position,
|
212 |
+
random_background=False,
|
213 |
+
offset_noise=False,
|
214 |
+
resize_rate=1,
|
215 |
+
mode="pixel",
|
216 |
+
image_size=256,
|
217 |
+
seed=1234,
|
218 |
+
) -> None:
|
219 |
+
assert mode in ["pixel", "local"]
|
220 |
+
|
221 |
+
size = image_size
|
222 |
+
self.seed = seed
|
223 |
+
batch_size = max(4, num_frames)
|
224 |
+
|
225 |
+
neg_texts = "uniform low no texture ugly, boring, bad anatomy, blurry, pixelated, obscure, unnatural colors, poor lighting, dull, and unclear."
|
226 |
+
uc = model.get_learned_conditioning([neg_texts]).to(device)
|
227 |
+
sampler = DDIMSampler(model)
|
228 |
+
|
229 |
+
# pre-compute camera matrices
|
230 |
+
camera = [get_camera_for_index(i).squeeze() for i in camera_views]
|
231 |
+
if ref_position is not None:
|
232 |
+
camera[ref_position] = torch.zeros_like(camera[ref_position]) # set ref camera to zero
|
233 |
+
camera = torch.stack(camera)
|
234 |
+
camera = camera.repeat(batch_size // num_frames, 1).to(device)
|
235 |
+
|
236 |
+
self.image_transform = T.Compose(
|
237 |
+
[
|
238 |
+
T.Resize((size, size)),
|
239 |
+
T.ToTensor(),
|
240 |
+
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
241 |
+
]
|
242 |
+
)
|
243 |
+
|
244 |
+
self.dtype = dtype
|
245 |
+
self.mode = mode
|
246 |
+
self.ref_position = ref_position
|
247 |
+
self.random_background = random_background
|
248 |
+
self.resize_rate = resize_rate
|
249 |
+
self.num_frames = num_frames
|
250 |
+
self.size = size
|
251 |
+
self.device = device
|
252 |
+
self.batch_size = batch_size
|
253 |
+
self.model = model
|
254 |
+
self.sampler = sampler
|
255 |
+
self.uc = uc
|
256 |
+
self.camera = camera
|
257 |
+
self.offset_noise = offset_noise
|
258 |
+
|
259 |
+
@staticmethod
|
260 |
+
def i2iStage2(
|
261 |
+
model,
|
262 |
+
image_size,
|
263 |
+
prompt,
|
264 |
+
uc,
|
265 |
+
sampler,
|
266 |
+
pixel_images,
|
267 |
+
ip=None,
|
268 |
+
step=20,
|
269 |
+
scale=5.0,
|
270 |
+
batch_size=8,
|
271 |
+
ddim_eta=0.0,
|
272 |
+
dtype=torch.float32,
|
273 |
+
device="cuda",
|
274 |
+
camera=None,
|
275 |
+
num_frames=4,
|
276 |
+
pixel_control=False,
|
277 |
+
transform=None,
|
278 |
+
offset_noise=False,
|
279 |
+
):
|
280 |
+
ip_raw = ip
|
281 |
+
if type(prompt) != list:
|
282 |
+
prompt = [prompt]
|
283 |
+
with torch.no_grad(), torch.autocast(device_type=torch.device(device).type, dtype=dtype):
|
284 |
+
c = model.get_learned_conditioning(prompt).to(
|
285 |
+
device
|
286 |
+
) # shape: torch.Size([1, 77, 1024]) mean: -0.17, std: 1.02, min: -7.50, max: 13.05
|
287 |
+
c_ = {"context": c.repeat(batch_size, 1, 1)} # batch_size
|
288 |
+
uc_ = {"context": uc.repeat(batch_size, 1, 1)}
|
289 |
+
|
290 |
+
if camera is not None:
|
291 |
+
c_["camera"] = uc_["camera"] = (
|
292 |
+
camera # shape: torch.Size([5, 16]) mean: 0.11, std: 0.49, min: -1.00, max: 1.00
|
293 |
+
)
|
294 |
+
c_["num_frames"] = uc_["num_frames"] = num_frames
|
295 |
+
|
296 |
+
if ip is not None:
|
297 |
+
ip_embed = model.get_learned_image_conditioning(ip).to(
|
298 |
+
device
|
299 |
+
) # shape: torch.Size([1, 257, 1280]) mean: 0.06, std: 0.53, min: -6.83, max: 11.12
|
300 |
+
ip_ = ip_embed.repeat(batch_size, 1, 1)
|
301 |
+
c_["ip"] = ip_
|
302 |
+
uc_["ip"] = torch.zeros_like(ip_)
|
303 |
+
|
304 |
+
if pixel_control:
|
305 |
+
assert camera is not None
|
306 |
+
|
307 |
+
transed_pixel_images = torch.stack([transform(i).to(device) for i in pixel_images])
|
308 |
+
latent_pixel_images = model.get_first_stage_encoding(model.encode_first_stage(transed_pixel_images))
|
309 |
+
|
310 |
+
c_["pixel_images"] = latent_pixel_images
|
311 |
+
uc_["pixel_images"] = torch.zeros_like(latent_pixel_images)
|
312 |
+
|
313 |
+
shape = [4, image_size // 8, image_size // 8] # [4, 32, 32]
|
314 |
+
if offset_noise:
|
315 |
+
ref = transform(ip_raw).to(device)
|
316 |
+
ref_latent = model.get_first_stage_encoding(model.encode_first_stage(ref[None, :, :, :]))
|
317 |
+
ref_mean = ref_latent.mean(dim=(-1, -2), keepdim=True)
|
318 |
+
time_steps = torch.randint(model.num_timesteps - 1, model.num_timesteps, (batch_size,), device=device)
|
319 |
+
x_T = model.q_sample(torch.ones([batch_size] + shape, device=device) * ref_mean, time_steps)
|
320 |
+
|
321 |
+
samples_ddim, _ = (
|
322 |
+
sampler.sample( # shape: torch.Size([5, 4, 32, 32]) mean: 0.29, std: 0.85, min: -3.38, max: 4.43
|
323 |
+
S=step,
|
324 |
+
conditioning=c_,
|
325 |
+
batch_size=batch_size,
|
326 |
+
shape=shape,
|
327 |
+
verbose=False,
|
328 |
+
unconditional_guidance_scale=scale,
|
329 |
+
unconditional_conditioning=uc_,
|
330 |
+
eta=ddim_eta,
|
331 |
+
x_T=x_T if offset_noise else None,
|
332 |
+
)
|
333 |
+
)
|
334 |
+
x_sample = model.decode_first_stage(samples_ddim)
|
335 |
+
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
336 |
+
x_sample = 255.0 * x_sample.permute(0, 2, 3, 1).cpu().numpy()
|
337 |
+
|
338 |
+
return list(x_sample.astype(np.uint8))
|
339 |
+
|
340 |
+
@torch.no_grad()
|
341 |
+
def diffuse(self, t, ip, pixel_images, n_test=2):
|
342 |
+
set_seed(self.seed)
|
343 |
+
ip = do_resize_content(ip, self.resize_rate)
|
344 |
+
pixel_images = [do_resize_content(i, self.resize_rate) for i in pixel_images]
|
345 |
+
|
346 |
+
if self.random_background:
|
347 |
+
bg_color = np.random.rand() * 255
|
348 |
+
ip = add_random_background(ip, bg_color)
|
349 |
+
pixel_images = [add_random_background(i, bg_color) for i in pixel_images]
|
350 |
+
|
351 |
+
images = []
|
352 |
+
for _ in range(n_test):
|
353 |
+
img = self.i2iStage2(
|
354 |
+
self.model,
|
355 |
+
self.size,
|
356 |
+
t,
|
357 |
+
self.uc,
|
358 |
+
self.sampler,
|
359 |
+
pixel_images=pixel_images,
|
360 |
+
ip=ip,
|
361 |
+
step=50,
|
362 |
+
scale=5,
|
363 |
+
batch_size=self.batch_size,
|
364 |
+
ddim_eta=0.0,
|
365 |
+
dtype=self.dtype,
|
366 |
+
device=self.device,
|
367 |
+
camera=self.camera,
|
368 |
+
num_frames=self.num_frames,
|
369 |
+
pixel_control=(self.mode == "pixel"),
|
370 |
+
transform=self.image_transform,
|
371 |
+
offset_noise=self.offset_noise,
|
372 |
+
)
|
373 |
+
img = np.concatenate(img, 1)
|
374 |
+
img = np.concatenate(
|
375 |
+
(img, ip.resize((self.size, self.size)), *[i.resize((self.size, self.size)) for i in pixel_images]),
|
376 |
+
axis=1,
|
377 |
+
)
|
378 |
+
images.append(img)
|
379 |
+
set_seed() # unset random and numpy seed
|
380 |
+
return images
|