Spaces:
Runtime error
Runtime error
Upload libs/base_utils.py with huggingface_hub
Browse files- libs/base_utils.py +392 -83
libs/base_utils.py
CHANGED
@@ -1,84 +1,393 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import cv2
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
if
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
return
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
return (img * 255).astype(np.uint8)
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import os
|
9 |
+
import shutil
|
10 |
+
from absl import logging
|
11 |
+
import sys
|
12 |
+
from pathlib import Path
|
13 |
+
from tqdm import tqdm
|
14 |
+
from omegaconf import OmegaConf
|
15 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
16 |
+
import datetime
|
17 |
+
import os.path as osp
|
18 |
+
import torch.distributed as dist
|
19 |
+
import builtins
|
20 |
+
import accelerate
|
21 |
+
import wandb
|
22 |
+
import re
|
23 |
+
from diffusers.training_utils import EMAModel
|
24 |
+
from rich import print
|
25 |
+
|
26 |
+
|
27 |
+
def get_obj_from_str(string, reload=False):
|
28 |
+
import importlib
|
29 |
+
module, cls = string.rsplit(".", 1)
|
30 |
+
if reload:
|
31 |
+
module_imp = importlib.import_module(module)
|
32 |
+
importlib.reload(module_imp)
|
33 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
34 |
+
|
35 |
+
|
36 |
+
def tensor_detail(t):
|
37 |
+
assert type(t) == torch.Tensor
|
38 |
+
print(f"shape: {t.shape} mean: {t.mean():.2f}, std: {t.std():.2f}, min: {t.min():.2f}, max: {t.max():.2f}")
|
39 |
+
|
40 |
+
|
41 |
+
def instantiate_from_config(config):
|
42 |
+
if not "target" in config:
|
43 |
+
raise KeyError("Expected key `target` to instantiate.")
|
44 |
+
model = get_obj_from_str(config["target"])(**config.get("params", dict()))
|
45 |
+
if config.get("resume", False):
|
46 |
+
print(f"resume from: {config.get('resume')}")
|
47 |
+
if os.path.isfile(config.get("resume")):
|
48 |
+
model.load_state_dict(torch.load(config["resume"], map_location="cpu"))
|
49 |
+
elif os.path.isdir(config.get("resume")) and hasattr(model, "from_pretrained"):
|
50 |
+
model.from_pretrained(config.get("resume"))
|
51 |
+
else:
|
52 |
+
raise Exception("could not resume")
|
53 |
+
return model
|
54 |
+
|
55 |
+
|
56 |
+
def set_logger(log_level='info', fname=None):
|
57 |
+
import logging as _logging
|
58 |
+
handler = logging.get_absl_handler()
|
59 |
+
formatter = _logging.Formatter('%(asctime)s - %(filename)s - %(message)s')
|
60 |
+
handler.setFormatter(formatter)
|
61 |
+
logging.set_verbosity(log_level)
|
62 |
+
if fname is not None:
|
63 |
+
handler = _logging.FileHandler(fname)
|
64 |
+
handler.setFormatter(formatter)
|
65 |
+
logging.get_absl_logger().addHandler(handler)
|
66 |
+
|
67 |
+
|
68 |
+
def dct2str(dct):
|
69 |
+
return str({k: f'{v:.6g}' for k, v in dct.items()})
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def copy_files_by_suffix(source_dir, target_dir, suffixes=[".py"], exclude_dirs=[]):
|
74 |
+
# Walk through the directory tree
|
75 |
+
for root, _, files in os.walk(source_dir):
|
76 |
+
if any(exclude_dir in root for exclude_dir in exclude_dirs):
|
77 |
+
continue
|
78 |
+
for file in files:
|
79 |
+
# Check if the file has one of the specified suffixes
|
80 |
+
if any(file.endswith(suffix) for suffix in suffixes):
|
81 |
+
# Construct the source and target paths
|
82 |
+
source_path = os.path.join(root, file)
|
83 |
+
relative_path = os.path.relpath(source_path, source_dir)
|
84 |
+
target_path = os.path.join(target_dir, relative_path)
|
85 |
+
|
86 |
+
# Ensure the target directory exists
|
87 |
+
os.makedirs(os.path.dirname(target_path), exist_ok=True)
|
88 |
+
|
89 |
+
# Copy the file
|
90 |
+
shutil.copyfile(source_path, target_path)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
def find_latest_step(regex, ckpt_root):
|
95 |
+
if not isinstance(regex, re.Pattern):
|
96 |
+
regex = re.compile(regex)
|
97 |
+
ints = []
|
98 |
+
for file in os.listdir(ckpt_root):
|
99 |
+
if re.match(regex, file):
|
100 |
+
ints.append(int(re.findall(r'\d+', file)[0]))
|
101 |
+
if len(ints) == 0:
|
102 |
+
raise FileNotFoundError(f"no file match {regex} in {ckpt_root}")
|
103 |
+
return max(ints)
|
104 |
+
|
105 |
+
|
106 |
+
def resume_from_workdir(config, accelerator, model_context, ema_context):
|
107 |
+
if config.get("resume", False):
|
108 |
+
with PrintContext(f"resume from {config.workdir}", accelerator.is_main_process):
|
109 |
+
for name in config.save_models:
|
110 |
+
max_step = find_latest_step(f"{name}-(\d+).pt", config.ckpt_root)
|
111 |
+
print(f"resume from {name}-{max_step}.pt")
|
112 |
+
model_context[name].load_state_dict(
|
113 |
+
torch.load(osp.join(config.ckpt_root, f"{name}-{max_step}.pt"),
|
114 |
+
map_location="cpu")
|
115 |
+
)
|
116 |
+
for k, ema in ema_context.items():
|
117 |
+
max_step = find_latest_step(f"{k}-ema-(\d+).pt", config.ckpt_root)
|
118 |
+
print(f"resume from {k}-ema-{max_step}.pt")
|
119 |
+
ema.load_state_dict(
|
120 |
+
torch.load(osp.join(config.ckpt_root, f"{k}-ema-{max_step}.pt"),
|
121 |
+
map_location="cpu")
|
122 |
+
)
|
123 |
+
ema.to(accelerator.device)
|
124 |
+
return max_step
|
125 |
+
else:
|
126 |
+
return 0
|
127 |
+
|
128 |
+
|
129 |
+
def get_model_context(models, device, dtype):
|
130 |
+
model_context = dict()
|
131 |
+
for key, model_config in models.items():
|
132 |
+
model = instantiate_from_config(model_config)
|
133 |
+
if hasattr(model, "device"):
|
134 |
+
try:
|
135 |
+
model.device = device
|
136 |
+
except Exception as e:
|
137 |
+
print(e)
|
138 |
+
print('passing set device')
|
139 |
+
if "t5" in type(model).__name__.lower() and isinstance(model, nn.Module):
|
140 |
+
# T5 model has a bug that it when using fp16
|
141 |
+
print(f"{'passing t5 model':-^72}")
|
142 |
+
model_context[key] = model.to(device)
|
143 |
+
continue
|
144 |
+
if isinstance(model, nn.Module):
|
145 |
+
model_context[key] = model.to(device=device, dtype=dtype)
|
146 |
+
else:
|
147 |
+
model_context[key] = model
|
148 |
+
model_context["device"] = device
|
149 |
+
model_context["dtype"] = dtype
|
150 |
+
return model_context
|
151 |
+
|
152 |
+
def get_ema_context(model_context, emas):
|
153 |
+
"""given config of ema models and model context, return an ema_context
|
154 |
+
contains all ema model in the current train process
|
155 |
+
|
156 |
+
Args:
|
157 |
+
model_context (dict): dict of names, point to pytroch models
|
158 |
+
emas (dict): dict of name, point to ema model, name was same with
|
159 |
+
"""
|
160 |
+
ema_context = dict()
|
161 |
+
if emas is None:
|
162 |
+
return ema_context
|
163 |
+
for ema_item in emas:
|
164 |
+
name = ema_item["name"]
|
165 |
+
ema_context[name] = EMAModel(model_context[name].parameters(), **ema_item.params)
|
166 |
+
return ema_context
|
167 |
+
|
168 |
+
|
169 |
+
def get_data_context(data, accelerator=None):
|
170 |
+
data_context = dict()
|
171 |
+
for key, data_config in data.items():
|
172 |
+
dataset = instantiate_from_config(data_config.dataset)
|
173 |
+
if data_config.get("distributed_sampler", False):
|
174 |
+
sampler_cls = get_obj_from_str(data_config.distributed_sampler.target)
|
175 |
+
distributed_sampler = sampler_cls(
|
176 |
+
dataset,
|
177 |
+
num_replicas=accelerator.num_processes if accelerator is not None else 1,
|
178 |
+
rank=accelerator.process_index if accelerator is not None else 0,
|
179 |
+
**data_config.distributed_sampler.params
|
180 |
+
)
|
181 |
+
dataloader = DataLoader(dataset, sampler=distributed_sampler, **data_config.dataloader)
|
182 |
+
else:
|
183 |
+
dataloader = DataLoader(dataset, **data_config.dataloader)
|
184 |
+
data_context[key] = dataloader
|
185 |
+
data_context[key + "_generator"] = get_data_generator(dataloader, accelerator.is_main_process if accelerator is not None else True, key)
|
186 |
+
data_context[key + "_dataset"] = dataset
|
187 |
+
return data_context
|
188 |
+
|
189 |
+
|
190 |
+
class Unimodel(torch.nn.Module):
|
191 |
+
def __init__(self, *args, **kwargs):
|
192 |
+
super().__init__()
|
193 |
+
self._module_list = nn.ModuleList(*args)
|
194 |
+
for k, v in kwargs.items():
|
195 |
+
setattr(self, k, v)
|
196 |
+
|
197 |
+
|
198 |
+
def config_optimizer(model_context, optimizer_models, default_opt_params):
|
199 |
+
"""
|
200 |
+
model_context: dict of model instances
|
201 |
+
optimizer_models: list of dict, each dict contains model name and modules
|
202 |
+
default_opt_params: dict of default optimizer parameters
|
203 |
+
"""
|
204 |
+
default_opt_params = dict(default_opt_params)
|
205 |
+
param_groups = []
|
206 |
+
for model_config in optimizer_models:
|
207 |
+
model = model_context[model_config["name"]]
|
208 |
+
if model_config.get("modules", None) is None: # all model when no sub modules specified
|
209 |
+
model.requires_grad_(True)
|
210 |
+
print(f"using all modules of {model_config['name']}")
|
211 |
+
para_dict = default_opt_params.copy()
|
212 |
+
opt_params = model_config.get("opt_params", dict())
|
213 |
+
para_dict.update(opt_params)
|
214 |
+
para_dict["params"] = list(model.parameters())
|
215 |
+
param_groups.append(para_dict)
|
216 |
+
else:
|
217 |
+
model.requires_grad_(False)
|
218 |
+
for module_config in model_config["modules"]:
|
219 |
+
para_dict = default_opt_params.copy()
|
220 |
+
params = []
|
221 |
+
for name, param in model.named_parameters():
|
222 |
+
if module_config["name"] in name:
|
223 |
+
print(name)
|
224 |
+
param.requires_grad = True
|
225 |
+
params.append(param)
|
226 |
+
para_dict["params"] = params
|
227 |
+
opt_params = model_config.get("opt_params", dict())
|
228 |
+
para_dict.update(opt_params)
|
229 |
+
param_groups.append(para_dict)
|
230 |
+
return param_groups
|
231 |
+
|
232 |
+
|
233 |
+
def cnt_params(model):
|
234 |
+
return sum(param.numel() for param in model.parameters())
|
235 |
+
|
236 |
+
|
237 |
+
def get_hparams(input_args=None):
|
238 |
+
argv = sys.argv if input_args is None else input_args
|
239 |
+
lst = []
|
240 |
+
for i in range(len(argv)):
|
241 |
+
if argv[i].startswith('config.'):
|
242 |
+
hparam_full, val = argv[i].split('=')
|
243 |
+
hparam = hparam_full.split('.')[-1]
|
244 |
+
lst.append(f'{hparam}={val}')
|
245 |
+
hparams = '-'.join(lst)
|
246 |
+
if hparams == '':
|
247 |
+
hparams = 'default'
|
248 |
+
return hparams
|
249 |
+
|
250 |
+
|
251 |
+
def add_prefix(dct, prefix):
|
252 |
+
return {f'{prefix}/{key}': val for key, val in dct.items()}
|
253 |
+
|
254 |
+
|
255 |
+
def grad_norm(model):
|
256 |
+
total_norm = 0.
|
257 |
+
for p in model.parameters():
|
258 |
+
if p.grad is not None:
|
259 |
+
param_norm = p.grad.data.norm(2)
|
260 |
+
total_norm += param_norm.item() ** 2
|
261 |
+
total_norm = total_norm ** (1. / 2)
|
262 |
+
return total_norm
|
263 |
+
|
264 |
+
|
265 |
+
def param_norm(model):
|
266 |
+
total_norm = 0.
|
267 |
+
for p in model.parameters():
|
268 |
+
param_norm = p.data.norm(2)
|
269 |
+
total_norm += param_norm.item() ** 2
|
270 |
+
total_norm = total_norm ** (1. / 2)
|
271 |
+
return total_norm
|
272 |
+
|
273 |
+
class PrintContext(object):
|
274 |
+
def __init__(self, name, verbose=True):
|
275 |
+
self.name = name
|
276 |
+
self.verbose = verbose
|
277 |
+
|
278 |
+
def __enter__(self):
|
279 |
+
if self.verbose: print(f'{self.name} processing...')
|
280 |
+
|
281 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
282 |
+
if self.verbose: print(f'{self.name} done')
|
283 |
+
|
284 |
+
def time_to_tensor(now: datetime.datetime):
|
285 |
+
return torch.tensor([now.year, now.month, now.day, now.hour, now.minute, now.second], dtype=torch.long)
|
286 |
+
|
287 |
+
def tensor_to_time(t: torch.Tensor):
|
288 |
+
return datetime.datetime(*t.tolist())
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
def setup(config, unk):
|
293 |
+
accelerator = accelerate.Accelerator(gradient_accumulation_steps=config.gradient_accumulation_steps)
|
294 |
+
device = accelerator.device
|
295 |
+
accelerate.utils.set_seed(config.seed, device_specific=True)
|
296 |
+
|
297 |
+
# sync time for all processes
|
298 |
+
g_handler = dist.new_group(backend='gloo')
|
299 |
+
now = time_to_tensor(datetime.datetime.now())
|
300 |
+
dist.broadcast(now, src=0, group=g_handler)
|
301 |
+
now = tensor_to_time(now).strftime("%Y-%m-%dT%H-%M-%S")
|
302 |
+
print("unknow args: ", unk, get_hparams(unk))
|
303 |
+
|
304 |
+
if config.get("workdir", None) is None:
|
305 |
+
config.workdir = osp.join(config.logdir, f"{config.config_name}-{get_hparams(unk)}-{now}")
|
306 |
+
print(f"{'workdir: ' + config.workdir:-^72}")
|
307 |
+
config.ckpt_root = osp.join(config.workdir, 'ckpts')
|
308 |
+
config.eval_root = osp.join(config.workdir, "eval")
|
309 |
+
config.eval_root2 = osp.join(config.workdir, "eval2")
|
310 |
+
|
311 |
+
if accelerator.is_main_process:
|
312 |
+
os.makedirs(config.workdir, exist_ok=True)
|
313 |
+
os.makedirs(config.ckpt_root, exist_ok=True)
|
314 |
+
os.makedirs(config.eval_root, exist_ok=True)
|
315 |
+
os.makedirs(config.eval_root2, exist_ok=True)
|
316 |
+
|
317 |
+
config.meta_dir = osp.join(config.workdir, f"meta-{now}")
|
318 |
+
copy_files_by_suffix(os.getcwd(), config.meta_dir, exclude_dirs=[config.logdir], suffixes=[".py", ".yaml"])
|
319 |
+
|
320 |
+
with open(osp.join(config.meta_dir, "config.yaml"), "w") as f:
|
321 |
+
f.write(OmegaConf.to_yaml(config))
|
322 |
+
|
323 |
+
wandb.init(dir=os.path.abspath(config.workdir), project=config.project, config=dict(config),
|
324 |
+
name=config.wandb_run_name, job_type='train', mode=config.wandb_mode, group="DDP")
|
325 |
+
if accelerator.is_main_process:
|
326 |
+
set_logger(log_level='info', fname=os.path.join(config.workdir, 'output.log'))
|
327 |
+
print(OmegaConf.to_yaml(config))
|
328 |
+
else:
|
329 |
+
set_logger(log_level='error')
|
330 |
+
builtins.print = lambda *args: None
|
331 |
+
|
332 |
+
assert not ('total_batch_size' in config and 'batch_size' in config)
|
333 |
+
if 'total_batch_size' not in config:
|
334 |
+
config.total_batch_size = config.batch_size * accelerator.num_processes
|
335 |
+
if 'batch_size' not in config:
|
336 |
+
assert config.total_batch_size % accelerator.num_processes == 0
|
337 |
+
config.batch_size = config.total_batch_size // accelerator.num_processes
|
338 |
+
if 'total_logical_batch_size' not in config:
|
339 |
+
config.total_logical_batch_size = config.total_batch_size * config.gradient_accumulation_steps
|
340 |
+
|
341 |
+
logging.info(f'Run on {accelerator.num_processes} devices')
|
342 |
+
|
343 |
+
return accelerator, device
|
344 |
+
|
345 |
+
|
346 |
+
def get_data_generator(loader, enable_tqdm, desc):
|
347 |
+
while True:
|
348 |
+
for data in tqdm(loader, disable=not enable_tqdm, desc=desc):
|
349 |
+
yield data
|
350 |
+
|
351 |
+
|
352 |
+
def do_resize_content(original_image: Image, scale_rate):
|
353 |
+
# resize image content wile retain the original image size
|
354 |
+
if scale_rate != 1:
|
355 |
+
# Calculate the new size after rescaling
|
356 |
+
new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
|
357 |
+
# Resize the image while maintaining the aspect ratio
|
358 |
+
resized_image = original_image.resize(new_size)
|
359 |
+
# Create a new image with the original size and black background
|
360 |
+
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
|
361 |
+
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
|
362 |
+
padded_image.paste(resized_image, paste_position)
|
363 |
+
return padded_image
|
364 |
+
else:
|
365 |
+
return original_image
|
366 |
+
|
367 |
+
def add_stroke(img, color=(255, 255, 255), stroke_radius=3):
|
368 |
+
# color in R, G, B format
|
369 |
+
if isinstance(img, Image.Image):
|
370 |
+
assert img.mode == "RGBA"
|
371 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA)
|
372 |
+
else:
|
373 |
+
assert img.shape[2] == 4
|
374 |
+
gray = img[:,:, 3]
|
375 |
+
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
|
376 |
+
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
|
377 |
+
res = cv2.drawContours(img, contours,-1, tuple(color)[::-1] + (255,), stroke_radius)
|
378 |
+
return Image.fromarray(cv2.cvtColor(res,cv2.COLOR_BGRA2RGBA))
|
379 |
+
|
380 |
+
def make_blob(image_size=(512, 512), sigma=0.2):
|
381 |
+
"""
|
382 |
+
make 2D blob image with:
|
383 |
+
I(x, y)=1-\exp \left(-\frac{(x-H / 2)^2+(y-W / 2)^2}{2 \sigma^2 HS}\right)
|
384 |
+
"""
|
385 |
+
import numpy as np
|
386 |
+
H, W = image_size
|
387 |
+
x = np.arange(0, W, 1, float)
|
388 |
+
y = np.arange(0, H, 1, float)
|
389 |
+
x, y = np.meshgrid(x, y)
|
390 |
+
x0 = W // 2
|
391 |
+
y0 = H // 2
|
392 |
+
img = 1 - np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2 * H * W))
|
393 |
return (img * 255).astype(np.uint8)
|