Mariam-Elz commited on
Commit
69d63b5
·
verified ·
1 Parent(s): 4b0f5e0

Upload model/crm/model.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. model/crm/model.py +213 -217
model/crm/model.py CHANGED
@@ -1,217 +1,213 @@
1
- import torch.nn as nn
2
- import torch
3
- import torch.nn.functional as F
4
-
5
- import numpy as np
6
-
7
-
8
- from pathlib import Path
9
- import cv2
10
- import trimesh
11
- import nvdiffrast.torch as dr
12
-
13
- from model.archs.decoders.shape_texture_net import TetTexNet
14
- from model.archs.unet import UNetPP
15
- from util.renderer import Renderer
16
- from model.archs.mlp_head import SdfMlp, RgbMlp
17
- import xatlas
18
-
19
-
20
- class Dummy:
21
- pass
22
-
23
- class CRM(nn.Module):
24
- def __init__(self, specs):
25
- super(CRM, self).__init__()
26
-
27
- self.specs = specs
28
- # configs
29
- input_specs = specs["Input"]
30
- self.input = Dummy()
31
- self.input.scale = input_specs['scale']
32
- self.input.resolution = input_specs['resolution']
33
- self.tet_grid_size = input_specs['tet_grid_size']
34
- self.camera_angle_num = input_specs['camera_angle_num']
35
-
36
- self.arch = Dummy()
37
- self.arch.fea_concat = specs["ArchSpecs"]["fea_concat"]
38
- self.arch.mlp_bias = specs["ArchSpecs"]["mlp_bias"]
39
-
40
- self.dec = Dummy()
41
- self.dec.c_dim = specs["DecoderSpecs"]["c_dim"]
42
- self.dec.plane_resolution = specs["DecoderSpecs"]["plane_resolution"]
43
-
44
- self.geo_type = specs["Train"].get("geo_type", "flex") # "dmtet" or "flex"
45
-
46
- self.unet2 = UNetPP(in_channels=self.dec.c_dim)
47
-
48
- mlp_chnl_s = 3 if self.arch.fea_concat else 1 # 3 for queried triplane feature concatenation
49
- self.decoder = TetTexNet(plane_reso=self.dec.plane_resolution, fea_concat=self.arch.fea_concat)
50
-
51
- if self.geo_type == "flex":
52
- self.weightMlp = nn.Sequential(
53
- nn.Linear(mlp_chnl_s * 32 * 8, 512),
54
- nn.SiLU(),
55
- nn.Linear(512, 21))
56
-
57
- self.sdfMlp = SdfMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
58
- self.rgbMlp = RgbMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
59
- # self.renderer = Renderer(tet_grid_size=self.tet_grid_size, camera_angle_num=self.camera_angle_num,
60
- # scale=self.input.scale, geo_type = self.geo_type)
61
-
62
-
63
- self.spob = True if specs['Pretrain']['mode'] is None else False # whether to add sphere
64
- self.radius = specs['Pretrain']['radius'] # used when spob
65
-
66
- self.denoising = True
67
- from diffusers import DDIMScheduler
68
- self.scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
69
-
70
- def decode(self, data, triplane_feature2):
71
- if self.geo_type == "flex":
72
- tet_verts = self.renderer.flexicubes.verts.unsqueeze(0)
73
- tet_indices = self.renderer.flexicubes.indices
74
-
75
- dec_verts = self.decoder(triplane_feature2, tet_verts)
76
- out = self.sdfMlp(dec_verts)
77
-
78
- weight = None
79
- if self.geo_type == "flex":
80
- grid_feat = torch.index_select(input=dec_verts, index=self.renderer.flexicubes.indices.reshape(-1),dim=1)
81
- grid_feat = grid_feat.reshape(dec_verts.shape[0], self.renderer.flexicubes.indices.shape[0], self.renderer.flexicubes.indices.shape[1] * dec_verts.shape[-1])
82
- weight = self.weightMlp(grid_feat)
83
- weight = weight * 0.1
84
-
85
- pred_sdf, deformation = out[..., 0], out[..., 1:]
86
- if self.spob:
87
- pred_sdf = pred_sdf + self.radius - torch.sqrt((tet_verts**2).sum(-1))
88
-
89
- _, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight)
90
- return verts[0].unsqueeze(0), faces[0].int()
91
-
92
- def export_mesh(self, data, out_dir, tri_fea_2 = None):
93
- verts = data['verts']
94
- faces = data['faces']
95
-
96
- dec_verts = self.decoder(tri_fea_2, verts.unsqueeze(0))
97
- colors = self.rgbMlp(dec_verts).squeeze().detach().cpu().numpy()
98
- # Expect predicted colors value range from [-1, 1]
99
- colors = (colors * 0.5 + 0.5).clip(0, 1)
100
-
101
- verts = verts[..., [0, 2, 1]]
102
- verts[..., 0]*= -1
103
- verts[..., 2]*= -1
104
- verts = verts.squeeze().cpu().numpy()
105
- faces = faces[..., [2, 1, 0]][..., [0, 2, 1]]#[..., [1, 0, 2]]
106
- faces = faces.squeeze().cpu().numpy()#faces[..., [2, 1, 0]].squeeze().cpu().numpy()
107
-
108
- # export the final mesh
109
- with torch.no_grad():
110
- mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault...
111
- mesh.export(f'{out_dir}.obj')
112
-
113
- def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None):
114
-
115
- mesh_v = data['verts'].squeeze().cpu().numpy()
116
- mesh_pos_idx = data['faces'].squeeze().cpu().numpy()
117
-
118
- def interpolate(attr, rast, attr_idx, rast_db=None):
119
- return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db,
120
- diff_attrs=None if rast_db is None else 'all')
121
-
122
- vmapping, indices, uvs = xatlas.parametrize(mesh_v, mesh_pos_idx)
123
-
124
- mesh_v = torch.tensor(mesh_v, dtype=torch.float32, device=device)
125
- mesh_pos_idx = torch.tensor(mesh_pos_idx, dtype=torch.int64, device=device)
126
-
127
- # Convert to tensors
128
- indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
129
-
130
- uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
131
- mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
132
- # mesh_v_tex. ture
133
- uv_clip = uvs[None, ...] * 2.0 - 1.0
134
-
135
- # pad to four component coordinate
136
- uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
137
-
138
- # rasterize
139
- rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), res)
140
-
141
- # Interpolate world space position
142
- gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
143
- mask = rast[..., 3:4] > 0
144
-
145
- # return uvs, mesh_tex_idx, gb_pos, mask
146
- gb_pos_unsqz = gb_pos.view(-1, 3)
147
- mask_unsqz = mask.view(-1)
148
- tex_unsqz = torch.zeros_like(gb_pos_unsqz) + 1
149
-
150
- gb_mask_pos = gb_pos_unsqz[mask_unsqz]
151
-
152
- gb_mask_pos = gb_mask_pos[None, ]
153
-
154
- with torch.no_grad():
155
-
156
- dec_verts = self.decoder(tri_fea_2, gb_mask_pos)
157
- colors = self.rgbMlp(dec_verts).squeeze()
158
-
159
- # Expect predicted colors value range from [-1, 1]
160
- lo, hi = (-1, 1)
161
- colors = (colors - lo) * (255 / (hi - lo))
162
- colors = colors.clip(0, 255)
163
-
164
- tex_unsqz[mask_unsqz] = colors
165
-
166
- tex = tex_unsqz.view(res + (3,))
167
-
168
- verts = mesh_v.squeeze().cpu().numpy()
169
- faces = mesh_pos_idx[..., [2, 1, 0]].squeeze().cpu().numpy()
170
- # faces = mesh_pos_idx
171
- # faces = faces.detach().cpu().numpy()
172
- # faces = faces[..., [2, 1, 0]]
173
- indices = indices[..., [2, 1, 0]]
174
-
175
- # xatlas.export(f"{out_dir}/{ind}.obj", verts[vmapping], indices, uvs)
176
- matname = f'{out_dir}.mtl'
177
- # matname = f'{out_dir}/{ind}.mtl'
178
- fid = open(matname, 'w')
179
- fid.write('newmtl material_0\n')
180
- fid.write('Kd 1 1 1\n')
181
- fid.write('Ka 1 1 1\n')
182
- # fid.write('Ks 0 0 0\n')
183
- fid.write('Ks 0.4 0.4 0.4\n')
184
- fid.write('Ns 10\n')
185
- fid.write('illum 2\n')
186
- fid.write(f'map_Kd {out_dir.split("/")[-1]}.png\n')
187
- fid.close()
188
-
189
- fid = open(f'{out_dir}.obj', 'w')
190
- # fid = open(f'{out_dir}/{ind}.obj', 'w')
191
- fid.write('mtllib %s.mtl\n' % out_dir.split("/")[-1])
192
-
193
- for pidx, p in enumerate(verts):
194
- pp = p
195
- fid.write('v %f %f %f\n' % (pp[0], pp[2], - pp[1]))
196
-
197
- for pidx, p in enumerate(uvs):
198
- pp = p
199
- fid.write('vt %f %f\n' % (pp[0], 1 - pp[1]))
200
-
201
- fid.write('usemtl material_0\n')
202
- for i, f in enumerate(faces):
203
- f1 = f + 1
204
- f2 = indices[i] + 1
205
- fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
206
- fid.close()
207
-
208
- img = np.asarray(tex.data.cpu().numpy(), dtype=np.float32)
209
- mask = np.sum(img.astype(float), axis=-1, keepdims=True)
210
- mask = (mask <= 3.0).astype(float)
211
- kernel = np.ones((3, 3), 'uint8')
212
- dilate_img = cv2.dilate(img, kernel, iterations=1)
213
- img = img * (1 - mask) + dilate_img * mask
214
- img = img.clip(0, 255).astype(np.uint8)
215
-
216
- cv2.imwrite(f'{out_dir}.png', img[..., [2, 1, 0]])
217
- # cv2.imwrite(f'{out_dir}/{ind}.png', img[..., [2, 1, 0]])
 
1
+ import torch.nn as nn
2
+ import torch
3
+ import torch.nn.functional as F
4
+
5
+ import numpy as np
6
+
7
+
8
+ from pathlib import Path
9
+ import cv2
10
+ import trimesh
11
+ import nvdiffrast.torch as dr
12
+
13
+ from model.archs.decoders.shape_texture_net import TetTexNet
14
+ from model.archs.unet import UNetPP
15
+ from util.renderer import Renderer
16
+ from model.archs.mlp_head import SdfMlp, RgbMlp
17
+ import xatlas
18
+
19
+
20
+ class Dummy:
21
+ pass
22
+
23
+ class CRM(nn.Module):
24
+ def __init__(self, specs):
25
+ super(CRM, self).__init__()
26
+
27
+ self.specs = specs
28
+ # configs
29
+ input_specs = specs["Input"]
30
+ self.input = Dummy()
31
+ self.input.scale = input_specs['scale']
32
+ self.input.resolution = input_specs['resolution']
33
+ self.tet_grid_size = input_specs['tet_grid_size']
34
+ self.camera_angle_num = input_specs['camera_angle_num']
35
+
36
+ self.arch = Dummy()
37
+ self.arch.fea_concat = specs["ArchSpecs"]["fea_concat"]
38
+ self.arch.mlp_bias = specs["ArchSpecs"]["mlp_bias"]
39
+
40
+ self.dec = Dummy()
41
+ self.dec.c_dim = specs["DecoderSpecs"]["c_dim"]
42
+ self.dec.plane_resolution = specs["DecoderSpecs"]["plane_resolution"]
43
+
44
+ self.geo_type = specs["Train"].get("geo_type", "flex") # "dmtet" or "flex"
45
+
46
+ self.unet2 = UNetPP(in_channels=self.dec.c_dim)
47
+
48
+ mlp_chnl_s = 3 if self.arch.fea_concat else 1 # 3 for queried triplane feature concatenation
49
+ self.decoder = TetTexNet(plane_reso=self.dec.plane_resolution, fea_concat=self.arch.fea_concat)
50
+
51
+ if self.geo_type == "flex":
52
+ self.weightMlp = nn.Sequential(
53
+ nn.Linear(mlp_chnl_s * 32 * 8, 512),
54
+ nn.SiLU(),
55
+ nn.Linear(512, 21))
56
+
57
+ self.sdfMlp = SdfMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
58
+ self.rgbMlp = RgbMlp(mlp_chnl_s * 32, 512, bias=self.arch.mlp_bias)
59
+ self.renderer = Renderer(tet_grid_size=self.tet_grid_size, camera_angle_num=self.camera_angle_num,
60
+ scale=self.input.scale, geo_type = self.geo_type)
61
+
62
+
63
+ self.spob = True if specs['Pretrain']['mode'] is None else False # whether to add sphere
64
+ self.radius = specs['Pretrain']['radius'] # used when spob
65
+
66
+ self.denoising = True
67
+ from diffusers import DDIMScheduler
68
+ self.scheduler = DDIMScheduler.from_pretrained("stabilityai/stable-diffusion-2-1-base", subfolder="scheduler")
69
+
70
+ def decode(self, data, triplane_feature2):
71
+ if self.geo_type == "flex":
72
+ tet_verts = self.renderer.flexicubes.verts.unsqueeze(0)
73
+ tet_indices = self.renderer.flexicubes.indices
74
+
75
+ dec_verts = self.decoder(triplane_feature2, tet_verts)
76
+ out = self.sdfMlp(dec_verts)
77
+
78
+ weight = None
79
+ if self.geo_type == "flex":
80
+ grid_feat = torch.index_select(input=dec_verts, index=self.renderer.flexicubes.indices.reshape(-1),dim=1)
81
+ grid_feat = grid_feat.reshape(dec_verts.shape[0], self.renderer.flexicubes.indices.shape[0], self.renderer.flexicubes.indices.shape[1] * dec_verts.shape[-1])
82
+ weight = self.weightMlp(grid_feat)
83
+ weight = weight * 0.1
84
+
85
+ pred_sdf, deformation = out[..., 0], out[..., 1:]
86
+ if self.spob:
87
+ pred_sdf = pred_sdf + self.radius - torch.sqrt((tet_verts**2).sum(-1))
88
+
89
+ _, verts, faces = self.renderer(data, pred_sdf, deformation, tet_verts, tet_indices, weight= weight)
90
+ return verts[0].unsqueeze(0), faces[0].int()
91
+
92
+ def export_mesh(self, data, out_dir, ind, device=None, tri_fea_2 = None):
93
+ verts = data['verts']
94
+ faces = data['faces']
95
+
96
+ dec_verts = self.decoder(tri_fea_2, verts.unsqueeze(0))
97
+ colors = self.rgbMlp(dec_verts).squeeze().detach().cpu().numpy()
98
+ # Expect predicted colors value range from [-1, 1]
99
+ colors = (colors * 0.5 + 0.5).clip(0, 1)
100
+
101
+ verts = verts.squeeze().cpu().numpy()
102
+ faces = faces[..., [2, 1, 0]].squeeze().cpu().numpy()
103
+
104
+ # export the final mesh
105
+ with torch.no_grad():
106
+ mesh = trimesh.Trimesh(verts, faces, vertex_colors=colors, process=False) # important, process=True leads to seg fault...
107
+ mesh.export(out_dir / f'{ind}.obj')
108
+
109
+ def export_mesh_wt_uv(self, ctx, data, out_dir, ind, device, res, tri_fea_2=None):
110
+
111
+ mesh_v = data['verts'].squeeze().cpu().numpy()
112
+ mesh_pos_idx = data['faces'].squeeze().cpu().numpy()
113
+
114
+ def interpolate(attr, rast, attr_idx, rast_db=None):
115
+ return dr.interpolate(attr.contiguous(), rast, attr_idx, rast_db=rast_db,
116
+ diff_attrs=None if rast_db is None else 'all')
117
+
118
+ vmapping, indices, uvs = xatlas.parametrize(mesh_v, mesh_pos_idx)
119
+
120
+ mesh_v = torch.tensor(mesh_v, dtype=torch.float32, device=device)
121
+ mesh_pos_idx = torch.tensor(mesh_pos_idx, dtype=torch.int64, device=device)
122
+
123
+ # Convert to tensors
124
+ indices_int64 = indices.astype(np.uint64, casting='same_kind').view(np.int64)
125
+
126
+ uvs = torch.tensor(uvs, dtype=torch.float32, device=mesh_v.device)
127
+ mesh_tex_idx = torch.tensor(indices_int64, dtype=torch.int64, device=mesh_v.device)
128
+ # mesh_v_tex. ture
129
+ uv_clip = uvs[None, ...] * 2.0 - 1.0
130
+
131
+ # pad to four component coordinate
132
+ uv_clip4 = torch.cat((uv_clip, torch.zeros_like(uv_clip[..., 0:1]), torch.ones_like(uv_clip[..., 0:1])), dim=-1)
133
+
134
+ # rasterize
135
+ rast, _ = dr.rasterize(ctx, uv_clip4, mesh_tex_idx.int(), res)
136
+
137
+ # Interpolate world space position
138
+ gb_pos, _ = interpolate(mesh_v[None, ...], rast, mesh_pos_idx.int())
139
+ mask = rast[..., 3:4] > 0
140
+
141
+ # return uvs, mesh_tex_idx, gb_pos, mask
142
+ gb_pos_unsqz = gb_pos.view(-1, 3)
143
+ mask_unsqz = mask.view(-1)
144
+ tex_unsqz = torch.zeros_like(gb_pos_unsqz) + 1
145
+
146
+ gb_mask_pos = gb_pos_unsqz[mask_unsqz]
147
+
148
+ gb_mask_pos = gb_mask_pos[None, ]
149
+
150
+ with torch.no_grad():
151
+
152
+ dec_verts = self.decoder(tri_fea_2, gb_mask_pos)
153
+ colors = self.rgbMlp(dec_verts).squeeze()
154
+
155
+ # Expect predicted colors value range from [-1, 1]
156
+ lo, hi = (-1, 1)
157
+ colors = (colors - lo) * (255 / (hi - lo))
158
+ colors = colors.clip(0, 255)
159
+
160
+ tex_unsqz[mask_unsqz] = colors
161
+
162
+ tex = tex_unsqz.view(res + (3,))
163
+
164
+ verts = mesh_v.squeeze().cpu().numpy()
165
+ faces = mesh_pos_idx[..., [2, 1, 0]].squeeze().cpu().numpy()
166
+ # faces = mesh_pos_idx
167
+ # faces = faces.detach().cpu().numpy()
168
+ # faces = faces[..., [2, 1, 0]]
169
+ indices = indices[..., [2, 1, 0]]
170
+
171
+ # xatlas.export(f"{out_dir}/{ind}.obj", verts[vmapping], indices, uvs)
172
+ matname = f'{out_dir}.mtl'
173
+ # matname = f'{out_dir}/{ind}.mtl'
174
+ fid = open(matname, 'w')
175
+ fid.write('newmtl material_0\n')
176
+ fid.write('Kd 1 1 1\n')
177
+ fid.write('Ka 1 1 1\n')
178
+ # fid.write('Ks 0 0 0\n')
179
+ fid.write('Ks 0.4 0.4 0.4\n')
180
+ fid.write('Ns 10\n')
181
+ fid.write('illum 2\n')
182
+ fid.write(f'map_Kd {out_dir.split("/")[-1]}.png\n')
183
+ fid.close()
184
+
185
+ fid = open(f'{out_dir}.obj', 'w')
186
+ # fid = open(f'{out_dir}/{ind}.obj', 'w')
187
+ fid.write('mtllib %s.mtl\n' % out_dir.split("/")[-1])
188
+
189
+ for pidx, p in enumerate(verts):
190
+ pp = p
191
+ fid.write('v %f %f %f\n' % (pp[0], pp[2], - pp[1]))
192
+
193
+ for pidx, p in enumerate(uvs):
194
+ pp = p
195
+ fid.write('vt %f %f\n' % (pp[0], 1 - pp[1]))
196
+
197
+ fid.write('usemtl material_0\n')
198
+ for i, f in enumerate(faces):
199
+ f1 = f + 1
200
+ f2 = indices[i] + 1
201
+ fid.write('f %d/%d %d/%d %d/%d\n' % (f1[0], f2[0], f1[1], f2[1], f1[2], f2[2]))
202
+ fid.close()
203
+
204
+ img = np.asarray(tex.data.cpu().numpy(), dtype=np.float32)
205
+ mask = np.sum(img.astype(float), axis=-1, keepdims=True)
206
+ mask = (mask <= 3.0).astype(float)
207
+ kernel = np.ones((3, 3), 'uint8')
208
+ dilate_img = cv2.dilate(img, kernel, iterations=1)
209
+ img = img * (1 - mask) + dilate_img * mask
210
+ img = img.clip(0, 255).astype(np.uint8)
211
+
212
+ cv2.imwrite(f'{out_dir}.png', img[..., [2, 1, 0]])
213
+ # cv2.imwrite(f'{out_dir}/{ind}.png', img[..., [2, 1, 0]])