Spaces:
Runtime error
Runtime error
File size: 12,615 Bytes
4562a05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""
training script for imagedream
- the config system is similar with stable diffusion ldm code base(using omigaconf, yaml; target, params initialization, etc.)
- the training code base is similar with unidiffuser training code base using accelerate
concat channel as input, pred xyz value mapped pixedl as groundtruth
"""
from omegaconf import OmegaConf
import argparse
import datetime
from pathlib import Path
from torch.utils.data import DataLoader
import os.path as osp
import numpy as np
import os
import torch
import wandb
from libs.base_utils import get_data_generator, PrintContext
from libs.base_utils import setup, instantiate_from_config, dct2str, add_prefix, get_obj_from_str
from absl import logging
from einops import rearrange
from libs.sample import ImageDreamDiffusion
def train(config, unk):
# using pipeline to extract models
accelerator, device = setup(config, unk)
with PrintContext(f"{'access STAT':-^50}", accelerator.is_main_process):
print(accelerator.state)
dtype = {
"fp16": torch.float16,
"fp32": torch.float32,
"no": torch.float32,
"bf16": torch.bfloat16,
}[accelerator.state.mixed_precision]
num_frames = config.num_frames
################## load models ##################
model_config = config.models.config
model_config = OmegaConf.load(model_config)
model = instantiate_from_config(model_config.model)
state_dict = torch.load(config.models.resume, map_location="cpu")
model_in_conv_keys = ["model.diffusion_model.input_blocks.0.0.weight",]
in_conv_keys = ["diffusion_model.input_blocks.0.0.weight"]
def modify_keys(state_dict, in_keys, out_keys, cur_state_dict=None):
print("this function only for fuse channel model")
for in_key in in_keys:
p = state_dict[in_key]
if cur_state_dict is not None:
p_cur = cur_state_dict[in_key]
print(p_cur.shape, p.shape)
if p_cur.shape == p.shape:
print(f"skip {in_key} because of same shape")
continue
state_dict[in_key] = torch.cat([p, torch.zeros_like(p)], dim=1) * 0.5
for out_key in out_keys:
p = state_dict[out_key]
if cur_state_dict is not None:
p_cur = cur_state_dict[out_key]
print(p_cur.shape, p.shape)
if p_cur.shape == p.shape:
print(f"skip {out_key} because of same shape")
continue
state_dict[out_key] = torch.cat([p, torch.zeros_like(p)], dim=0)
return state_dict
def wipe_keys(state_dict, keys):
for key in keys:
state_dict.pop(key)
return state_dict
unet_config = model_config.model.params.unet_config
is_normal_inout_channel = not (unet_config.params.in_channels != 4 or unet_config.params.out_channels != 4)
if not is_normal_inout_channel:
state_dict = modify_keys(state_dict, model_in_conv_keys, [], model.state_dict())
print(model.load_state_dict(state_dict, strict=False))
print("loaded model from {}".format(config.models.resume))
if config.models.get("resume_unet", None) is not None:
unet_state_dict = torch.load(config.models.resume_unet, map_location="cpu")
if not is_normal_inout_channel:
unet_state_dict = modify_keys(unet_state_dict, in_conv_keys, [], model.model.state_dict())
print(model.model.load_state_dict(unet_state_dict, strict= False))
print(f"______ load unet from {config.models.resume_unet} ______")
model.to(device)
model.device = device
model.clip_model.device = device
################# setup optimizer #################
from torch.optim import AdamW
from accelerate.utils import DummyOptim
optimizer_cls = (
AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
optimizer = optimizer_cls(model.model.parameters(), **config.optimizer)
################# prepare datasets #################
dataset = instantiate_from_config(config.train_data)
eval_dataset = instantiate_from_config(config.eval_data)
dl_config = config.dataloader
dataloader = DataLoader(dataset, **dl_config, batch_size=config.batch_size)
model, optimizer, dataloader, = accelerator.prepare(model, optimizer, dataloader)
generator = get_data_generator(dataloader, accelerator.is_main_process, "train")
if config.get("sampler", None) is not None:
sampler_cls = get_obj_from_str(config.sampler.target)
sampler = sampler_cls(model, device, dtype, **config.sampler.params)
else:
sampler = ImageDreamDiffusion(model, config.mode, num_frames, device, dtype, dataset.camera_views,
offset_noise=config.get("offset_noise", False),
ref_position=dataset.ref_position,
random_background=dataset.random_background,
resize_rate=dataset.resize_rate)
################# evaluation code #################
def evaluation():
from PIL import Image
import numpy as np
return_ls = []
for i in range(accelerator.process_index, len(eval_dataset), accelerator.num_processes):
item = eval_dataset[i]
cond = item['cond']
images = sampler.diffuse("3D assets.", cond,
pixel_images=item["cond_raw_images"],
n_test=2)
images = np.concatenate(images, 0)
images = [Image.fromarray(images)]
return_ls.append(dict(images=images, ident=eval_dataset[i]['ident']))
return return_ls
global_step = 0
total_step = 0
log_step = 0
eval_step = 0
save_step = config.save_interval
unet = model.model
while True:
item = next(generator)
unet.train()
bs = item["clip_cond"].shape[0]
BS = bs * num_frames
item["clip_cond"] = item["clip_cond"].to(device).to(dtype)
item["vae_cond"] = item["vae_cond"].to(device).to(dtype)
camera_input = item["cameras"].to(device)
camera_input = camera_input.reshape((BS, camera_input.shape[-1]))
gd_type = config.get("gd_type", "pixel")
if gd_type == "pixel":
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
gd = item["target_images_vae"]
elif gd_type == "xyz":
item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
gd = item["target_images_xyz_vae"]
elif gd_type == "fusechannel":
item["target_images_vae"] = item["target_images_vae"].to(device).to(dtype)
item["target_images_xyz_vae"] = item["target_images_xyz_vae"].to(device).to(dtype)
gd = torch.cat((item["target_images_vae"], item["target_images_xyz_vae"]), dim=0)
else:
raise NotImplementedError
with torch.no_grad(), accelerator.autocast("cuda"):
ip_embed = model.clip_model.encode_image_with_transformer(item["clip_cond"])
ip_ = ip_embed.repeat_interleave(num_frames, dim=0)
ip_img = model.get_first_stage_encoding(model.encode_first_stage(item["vae_cond"]))
gd = rearrange(gd, "B F C H W -> (B F) C H W")
pixel_images = rearrange(item["target_images_vae"], "B F C H W -> (B F) C H W")
latent_target_images = model.get_first_stage_encoding(model.encode_first_stage(gd))
pixel_images = model.get_first_stage_encoding(model.encode_first_stage(pixel_images))
if gd_type == "fusechannel":
latent_target_images = rearrange(latent_target_images, "(B F) C H W -> B F C H W", B=bs * 2)
image_latent, xyz_latent = torch.chunk(latent_target_images, 2)
fused_channel_latent = torch.cat((image_latent, xyz_latent), dim=-3)
latent_target_images = rearrange(fused_channel_latent, "B F C H W -> (B F) C H W")
if item.get("captions", None) is not None:
caption_ls = np.array(item["caption"]).T.reshape((-1, BS)).squeeze()
prompt_cond = model.get_learned_conditioning(caption_ls)
elif item.get("caption", None) is not None:
prompt_cond = model.get_learned_conditioning(item["caption"])
prompt_cond = prompt_cond.repeat_interleave(num_frames, dim=0)
else:
prompt_cond = model.get_learned_conditioning(["3D assets."]).repeat(BS, 1, 1)
condition = {
"context": prompt_cond,
"ip": ip_,
# "ip_img": ip_img,
"camera": camera_input,
"pixel_images": pixel_images,
}
with torch.autocast("cuda"), accelerator.accumulate(model):
time_steps = torch.randint(0, model.num_timesteps, (BS,), device=device)
noise = torch.randn_like(latent_target_images, device=device)
x_noisy = model.q_sample(latent_target_images, time_steps, noise)
output = unet(x_noisy, time_steps, **condition, num_frames=num_frames)
loss = torch.nn.functional.mse_loss(noise, output)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
total_step = global_step * config.total_batch_size
if total_step > log_step:
metrics = dict(
loss = accelerator.gather(loss.detach().mean()).mean().item(),
scale = accelerator.scaler.get_scale() if accelerator.scaler is not None else -1
)
log_step += config.log_interval
if accelerator.is_main_process:
logging.info(dct2str(dict(step=total_step, **metrics)))
wandb.log(add_prefix(metrics, 'train'), step=total_step)
if total_step > save_step and accelerator.is_main_process:
logging.info("saving done")
torch.save(unet.state_dict(), osp.join(config.ckpt_root, f"unet-{total_step}"))
save_step += config.save_interval
logging.info("save done")
if total_step > eval_step:
logging.info("evaluationing")
unet.eval()
return_ls = evaluation()
cur_eval_base = osp.join(config.eval_root, f"{total_step:07d}")
os.makedirs(cur_eval_base, exist_ok=True)
wandb_image_ls = []
for item in return_ls:
for i, im in enumerate(item["images"]):
im.save(osp.join(cur_eval_base, f"{item['ident']}-{i:03d}-{accelerator.process_index}-.png"))
wandb_image_ls.append(wandb.Image(im, caption=f"{item['ident']}-{i:03d}-{accelerator.process_index}"))
wandb.log({"eval_samples": wandb_image_ls})
eval_step += config.eval_interval
logging.info("evaluation done")
accelerator.wait_for_everyone()
if total_step > config.max_step:
break
if __name__ == "__main__":
# load config from config path, then merge with cli args
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, default="configs/nf7_v3_SNR_rd_size_stroke.yaml"
)
parser.add_argument(
"--logdir", type=str, default="train_logs", help="the dir to put logs"
)
parser.add_argument(
"--resume_workdir", type=str, default=None, help="specify to do resume"
)
args, unk = parser.parse_known_args()
print(args, unk)
config = OmegaConf.load(args.config)
if args.resume_workdir is not None:
assert osp.exists(args.resume_workdir), f"{args.resume_workdir} not exists"
config.config.workdir = args.resume_workdir
config.config.resume = True
OmegaConf.set_struct(config, True) # prevent adding new keys
cli_conf = OmegaConf.from_cli(unk)
config = OmegaConf.merge(config, cli_conf)
config = config.config
OmegaConf.set_struct(config, False)
config.logdir = args.logdir
config.config_name = Path(args.config).stem
train(config, unk)
|