Macropodus's picture
preprocess
bd24f17 verified
# -*- coding: utf-8 -*-
import operator
import copy
import re
from transformers import BertTokenizer, BertForMaskedLM
import gradio as gr
import opencc
import torch
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2"
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
vocab = tokenizer.vocab
# from modelscope import AutoTokenizer, AutoModelForMaskedLM
# pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2"
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
# model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path)
# vocab = tokenizer.vocab
converter_t2s = opencc.OpenCC("t2s.json")
context = converter_t2s.convert("汉字") # 漢字
PUN_EN2ZH_DICT = {",": ",", ";": ";", "!": "!", "?": "?", ":": ":", "(": "(", ")": ")", "_": "—"}
PUN_BERT_DICT = {"“":'"', "”":'"', "‘":'"', "’":'"', "—": "_", "——": "__"}
def func_macro_correct(text):
with torch.no_grad():
outputs = model(**tokenizer([text], padding=True, return_tensors='pt'))
def flag_total_chinese(text):
"""
judge is total chinese or not, 判断是不是全是中文
Args:
text: str, eg. "macadam, 碎石路"
Returns:
bool, True or False
"""
for word in text:
if not "\u4e00" <= word <= "\u9fa5":
return False
return True
def get_errors_from_diff_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
"""Get errors between corrected text and origin text
code from: https://github.com/shibing624/pycorrector
"""
new_corrected_text = ""
errors = []
i, j = 0, 0
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '']
while i < len(origin_text) and j < len(corrected_text):
if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens:
new_corrected_text += origin_text[i]
i += 1
elif corrected_text[j] in unk_tokens:
new_corrected_text += corrected_text[j]
j += 1
# Deal with Chinese characters
elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]):
# If the two characters are the same, then the two pointers move forward together
if origin_text[i] == corrected_text[j]:
new_corrected_text += corrected_text[j]
i += 1
j += 1
else:
# Check for insertion errors
if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]:
errors.append(('', corrected_text[j], j))
new_corrected_text += corrected_text[j]
j += 1
# Check for deletion errors
elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]:
errors.append((origin_text[i], '', i))
i += 1
# Check for replacement errors
else:
errors.append((origin_text[i], corrected_text[j], i))
new_corrected_text += corrected_text[j]
i += 1
j += 1
else:
new_corrected_text += origin_text[i]
if origin_text[i] == corrected_text[j]:
j += 1
i += 1
errors = sorted(errors, key=operator.itemgetter(2))
return new_corrected_text, errors
def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
"""Get new corrected text and errors between corrected text and origin text
code from: https://github.com/shibing624/pycorrector
"""
errors = []
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ',']
for i, ori_char in enumerate(origin_text):
if i >= len(corrected_text):
continue
if ori_char in unk_tokens or ori_char not in know_tokens:
# deal with unk word
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
if ori_char != corrected_text[i]:
if not flag_total_chinese(ori_char):
# pass not chinese char
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
continue
if not flag_total_chinese(corrected_text[i]):
corrected_text = corrected_text[:i] + corrected_text[i + 1:]
continue
errors.append([ori_char, corrected_text[i], i])
errors = sorted(errors, key=operator.itemgetter(2))
return corrected_text, errors
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
corrected_text = _text[:len(text)]
print("#" * 128)
print(text)
print(corrected_text)
print(len(text), len(corrected_text))
if len(corrected_text) == len(text):
corrected_text, details = get_errors_from_same_length(corrected_text, text, know_tokens=vocab)
else:
corrected_text, details = get_errors_from_diff_length(corrected_text, text, know_tokens=vocab)
print(text, ' => ', corrected_text, details)
# return corrected_text + ' ' + str(details)
line_dict = {"source": text, "target": corrected_text, "errors": details}
return line_dict
def transfor_english_symbol_to_chinese(text, kv_dict=PUN_EN2ZH_DICT):
""" 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """
for k, v in kv_dict.items(): # 英文替换
text = text.replace(k, v)
if text and text[-1] == ".": # 最后一个字符是英文.
text = text[:-1] + "。"
if text and "\"" in text: # 双引号
index_list = [i.start() for i in re.finditer("\"", text)]
if index_list:
for idx, index in enumerate(index_list):
symbol = "“" if idx % 2 == 0 else "”"
text = text[:index] + symbol + text[index + 1:]
if text and "'" in text: # 单引号
index_list = [i.start() for i in re.finditer("'", text)]
if index_list:
for idx, index in enumerate(index_list):
symbol = "‘" if idx % 2 == 0 else "’"
text = text[:index] + symbol + text[index + 1:]
return text
def cut_sent_by_stay(text, return_length=True, add_semicolon=False):
""" 分句但是保存原标点符号 """
if add_semicolon:
text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|;|!|?|。|…|\!|\?", text)
conn_symbol = ";!?。…”;!?》)\n"
else:
text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|!|?|。|…|\!|\?", text)
conn_symbol = "!?。…”!?》)\n"
text_length_s = []
text_cut = []
len_text = len(text) - 1
# signal_symbol = "—”>;?…)‘《’(·》“~,、!。:<"
len_global = 0
for idx, text_sp_i in enumerate(text_sp):
text_cut_idx = text_sp[idx]
len_global_before = copy.deepcopy(len_global)
len_global += len(text_sp_i)
while True:
if len_global <= len_text and text[len_global] in conn_symbol:
text_cut_idx += text[len_global]
else:
# len_global += 1
if text_cut_idx:
text_length_s.append([len_global_before, len_global])
text_cut.append(text_cut_idx)
break
len_global += 1
if return_length:
return text_cut, text_length_s
return text_cut
def transfor_bert_unk_pun_to_know(text, kv_dict=PUN_BERT_DICT):
""" 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """
for k, v in kv_dict.items(): # 英文替换
text = text.replace(k, v)
return text
def tradition_to_simple(text):
""" 繁体到简体 """
return converter_t2s.convert(text)
def string_q2b(ustring):
"""把字符串全角转半角"""
return "".join([q2b(uchar) for uchar in ustring])
def q2b(uchar):
"""全角转半角"""
inside_code = ord(uchar)
if inside_code == 0x3000:
inside_code = 0x0020
else:
inside_code -= 0xfee0
if inside_code < 0x0020 or inside_code > 0x7e: # 转完之后不是半角字符返回原来的字符
return uchar
return chr(inside_code)
def func_macro_correct_long(text):
""" 长句 """
texts, length = cut_sent_by_stay(text, return_length=True, add_semicolon=True)
text_correct = ""
errors_new = []
for idx, text in enumerate(texts):
# 前处理
text = transfor_english_symbol_to_chinese(text)
text = string_q2b(text)
text = tradition_to_simple(text)
text = transfor_bert_unk_pun_to_know(text)
text_out = func_macro_correct(text)
source = text_out.get("source")
target = text_out.get("target")
errors = text_out.get("errors")
text_correct += target
for error in errors:
pos = length[idx][0] + error[-1]
error_1 = [error[0], error[1], pos]
errors_new.append(error_1)
return text_correct + '\n' + str(errors_new)
if __name__ == '__main__':
text = """网购的烦脑
emer 发布于 2025-7-3 18:20 阅读:73
最近网购遇到件恼火的事。我在网店看中件羽戎服,店家保正是正品,还承诺七天无里由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。
联系客服时,对方态度敷衔,先说让我自行缝补,后又说要扣除运废才给退。我在评沦区如实描述经历,结果发现好多消废者都有类似遭遇。
这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复合对商品信息。
网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。
网购的烦恼e发布于2025-7-3期期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。"""
print(func_macro_correct_long(text))
examples = [
"夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。",
"机七学习是人工智能领遇最能体现智能的一个分知",
'他们的吵翻很不错,再说他们做的咖喱鸡也好吃',
"抗疫路上,除了提心吊胆也有难的得欢笑。",
"我是练习时长两念半的鸽仁练习生蔡徐坤",
"清晨,如纱一般地薄雾笼罩着世界。",
"得府许我立庙于此,故请君移去尔。",
"他法语说的很好,的语也不错",
"遇到一位很棒的奴生跟我疗天",
"五年级得数学,我考的很差。",
"我们为这个目标努力不解",
'今天兴情很好',
]
gr.Interface(
func_macro_correct_long,
inputs='text',
outputs='text',
title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
examples=examples
).launch()