# -*- coding: utf-8 -*- import operator import copy import re from transformers import BertTokenizer, BertForMaskedLM import gradio as gr import opencc import torch pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2" tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path) model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path) vocab = tokenizer.vocab # from modelscope import AutoTokenizer, AutoModelForMaskedLM # pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2" # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path) # model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path) # vocab = tokenizer.vocab converter_t2s = opencc.OpenCC("t2s.json") context = converter_t2s.convert("汉字") # 漢字 PUN_EN2ZH_DICT = {",": ",", ";": ";", "!": "!", "?": "?", ":": ":", "(": "(", ")": ")", "_": "—"} PUN_BERT_DICT = {"“":'"', "”":'"', "‘":'"', "’":'"', "—": "_", "——": "__"} def func_macro_correct(text): with torch.no_grad(): outputs = model(**tokenizer([text], padding=True, return_tensors='pt')) def flag_total_chinese(text): """ judge is total chinese or not, 判断是不是全是中文 Args: text: str, eg. "macadam, 碎石路" Returns: bool, True or False """ for word in text: if not "\u4e00" <= word <= "\u9fa5": return False return True def get_errors_from_diff_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): """Get errors between corrected text and origin text code from: https://github.com/shibing624/pycorrector """ new_corrected_text = "" errors = [] i, j = 0, 0 unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', ''] while i < len(origin_text) and j < len(corrected_text): if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens: new_corrected_text += origin_text[i] i += 1 elif corrected_text[j] in unk_tokens: new_corrected_text += corrected_text[j] j += 1 # Deal with Chinese characters elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]): # If the two characters are the same, then the two pointers move forward together if origin_text[i] == corrected_text[j]: new_corrected_text += corrected_text[j] i += 1 j += 1 else: # Check for insertion errors if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]: errors.append(('', corrected_text[j], j)) new_corrected_text += corrected_text[j] j += 1 # Check for deletion errors elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]: errors.append((origin_text[i], '', i)) i += 1 # Check for replacement errors else: errors.append((origin_text[i], corrected_text[j], i)) new_corrected_text += corrected_text[j] i += 1 j += 1 else: new_corrected_text += origin_text[i] if origin_text[i] == corrected_text[j]: j += 1 i += 1 errors = sorted(errors, key=operator.itemgetter(2)) return new_corrected_text, errors def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]): """Get new corrected text and errors between corrected text and origin text code from: https://github.com/shibing624/pycorrector """ errors = [] unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ','] for i, ori_char in enumerate(origin_text): if i >= len(corrected_text): continue if ori_char in unk_tokens or ori_char not in know_tokens: # deal with unk word corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue if ori_char != corrected_text[i]: if not flag_total_chinese(ori_char): # pass not chinese char corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:] continue if not flag_total_chinese(corrected_text[i]): corrected_text = corrected_text[:i] + corrected_text[i + 1:] continue errors.append([ori_char, corrected_text[i], i]) errors = sorted(errors, key=operator.itemgetter(2)) return corrected_text, errors _text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '') corrected_text = _text[:len(text)] print("#" * 128) print(text) print(corrected_text) print(len(text), len(corrected_text)) if len(corrected_text) == len(text): corrected_text, details = get_errors_from_same_length(corrected_text, text, know_tokens=vocab) else: corrected_text, details = get_errors_from_diff_length(corrected_text, text, know_tokens=vocab) print(text, ' => ', corrected_text, details) # return corrected_text + ' ' + str(details) line_dict = {"source": text, "target": corrected_text, "errors": details} return line_dict def transfor_english_symbol_to_chinese(text, kv_dict=PUN_EN2ZH_DICT): """ 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """ for k, v in kv_dict.items(): # 英文替换 text = text.replace(k, v) if text and text[-1] == ".": # 最后一个字符是英文. text = text[:-1] + "。" if text and "\"" in text: # 双引号 index_list = [i.start() for i in re.finditer("\"", text)] if index_list: for idx, index in enumerate(index_list): symbol = "“" if idx % 2 == 0 else "”" text = text[:index] + symbol + text[index + 1:] if text and "'" in text: # 单引号 index_list = [i.start() for i in re.finditer("'", text)] if index_list: for idx, index in enumerate(index_list): symbol = "‘" if idx % 2 == 0 else "’" text = text[:index] + symbol + text[index + 1:] return text def cut_sent_by_stay(text, return_length=True, add_semicolon=False): """ 分句但是保存原标点符号 """ if add_semicolon: text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|;|!|?|。|…|\!|\?", text) conn_symbol = ";!?。…”;!?》)\n" else: text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|!|?|。|…|\!|\?", text) conn_symbol = "!?。…”!?》)\n" text_length_s = [] text_cut = [] len_text = len(text) - 1 # signal_symbol = "—”>;?…)‘《’(·》“~,、!。:<" len_global = 0 for idx, text_sp_i in enumerate(text_sp): text_cut_idx = text_sp[idx] len_global_before = copy.deepcopy(len_global) len_global += len(text_sp_i) while True: if len_global <= len_text and text[len_global] in conn_symbol: text_cut_idx += text[len_global] else: # len_global += 1 if text_cut_idx: text_length_s.append([len_global_before, len_global]) text_cut.append(text_cut_idx) break len_global += 1 if return_length: return text_cut, text_length_s return text_cut def transfor_bert_unk_pun_to_know(text, kv_dict=PUN_BERT_DICT): """ 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """ for k, v in kv_dict.items(): # 英文替换 text = text.replace(k, v) return text def tradition_to_simple(text): """ 繁体到简体 """ return converter_t2s.convert(text) def string_q2b(ustring): """把字符串全角转半角""" return "".join([q2b(uchar) for uchar in ustring]) def q2b(uchar): """全角转半角""" inside_code = ord(uchar) if inside_code == 0x3000: inside_code = 0x0020 else: inside_code -= 0xfee0 if inside_code < 0x0020 or inside_code > 0x7e: # 转完之后不是半角字符返回原来的字符 return uchar return chr(inside_code) def func_macro_correct_long(text): """ 长句 """ texts, length = cut_sent_by_stay(text, return_length=True, add_semicolon=True) text_correct = "" errors_new = [] for idx, text in enumerate(texts): # 前处理 text = transfor_english_symbol_to_chinese(text) text = string_q2b(text) text = tradition_to_simple(text) text = transfor_bert_unk_pun_to_know(text) text_out = func_macro_correct(text) source = text_out.get("source") target = text_out.get("target") errors = text_out.get("errors") text_correct += target for error in errors: pos = length[idx][0] + error[-1] error_1 = [error[0], error[1], pos] errors_new.append(error_1) return text_correct + '\n' + str(errors_new) if __name__ == '__main__': text = """网购的烦脑 emer 发布于 2025-7-3 18:20 阅读:73 最近网购遇到件恼火的事。我在网店看中件羽戎服,店家保正是正品,还承诺七天无里由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。 联系客服时,对方态度敷衔,先说让我自行缝补,后又说要扣除运废才给退。我在评沦区如实描述经历,结果发现好多消废者都有类似遭遇。 这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复合对商品信息。 网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。 网购的烦恼e发布于2025-7-3期期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。""" print(func_macro_correct_long(text)) examples = [ "夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。", "机七学习是人工智能领遇最能体现智能的一个分知", '他们的吵翻很不错,再说他们做的咖喱鸡也好吃', "抗疫路上,除了提心吊胆也有难的得欢笑。", "我是练习时长两念半的鸽仁练习生蔡徐坤", "清晨,如纱一般地薄雾笼罩着世界。", "得府许我立庙于此,故请君移去尔。", "他法语说的很好,的语也不错", "遇到一位很棒的奴生跟我疗天", "五年级得数学,我考的很差。", "我们为这个目标努力不解", '今天兴情很好', ] gr.Interface( func_macro_correct_long, inputs='text', outputs='text', title="Chinese Spelling Correction Model Macropodus/macbert4mdcspell_v2", description="Copy or input error Chinese text. Submit and the machine will correct text.", article="Link to Github REPO: macro-correct", examples=examples ).launch()