Spaces:
Runtime error
Runtime error
Atin Sakkeer Hussain
commited on
Commit
Β·
c399026
1
Parent(s):
b5e6f78
Add app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.cuda
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import mdtex2html
|
| 5 |
+
import tempfile
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import scipy
|
| 8 |
+
import argparse
|
| 9 |
+
|
| 10 |
+
from llama.m2ugen import M2UGen
|
| 11 |
+
import llama
|
| 12 |
+
import numpy as np
|
| 13 |
+
import os
|
| 14 |
+
import torch
|
| 15 |
+
import torchaudio
|
| 16 |
+
import torchvision.transforms as transforms
|
| 17 |
+
import av
|
| 18 |
+
import subprocess
|
| 19 |
+
import librosa
|
| 20 |
+
|
| 21 |
+
parser = argparse.ArgumentParser()
|
| 22 |
+
parser.add_argument(
|
| 23 |
+
"--model", default="./ckpts/checkpoint.pth", type=str,
|
| 24 |
+
help="Name of or path to M2UGen pretrained checkpoint",
|
| 25 |
+
)
|
| 26 |
+
parser.add_argument(
|
| 27 |
+
"--llama_type", default="7B", type=str,
|
| 28 |
+
help="Type of llama original weight",
|
| 29 |
+
)
|
| 30 |
+
parser.add_argument(
|
| 31 |
+
"--llama_dir", default="/path/to/llama", type=str,
|
| 32 |
+
help="Path to LLaMA pretrained checkpoint",
|
| 33 |
+
)
|
| 34 |
+
parser.add_argument(
|
| 35 |
+
"--mert_path", default="m-a-p/MERT-v1-330M", type=str,
|
| 36 |
+
help="Path to MERT pretrained checkpoint",
|
| 37 |
+
)
|
| 38 |
+
parser.add_argument(
|
| 39 |
+
"--vit_path", default="m-a-p/MERT-v1-330M", type=str,
|
| 40 |
+
help="Path to ViT pretrained checkpoint",
|
| 41 |
+
)
|
| 42 |
+
parser.add_argument(
|
| 43 |
+
"--vivit_path", default="m-a-p/MERT-v1-330M", type=str,
|
| 44 |
+
help="Path to ViViT pretrained checkpoint",
|
| 45 |
+
)
|
| 46 |
+
parser.add_argument(
|
| 47 |
+
"--knn_dir", default="./ckpts", type=str,
|
| 48 |
+
help="Path to directory with KNN Index",
|
| 49 |
+
)
|
| 50 |
+
parser.add_argument(
|
| 51 |
+
'--music_decoder', default="musicgen", type=str,
|
| 52 |
+
help='Decoder to use musicgen/audioldm2')
|
| 53 |
+
|
| 54 |
+
parser.add_argument(
|
| 55 |
+
'--music_decoder_path', default="facebook/musicgen-medium", type=str,
|
| 56 |
+
help='Path to decoder to use musicgen/audioldm2')
|
| 57 |
+
|
| 58 |
+
args = parser.parse_args()
|
| 59 |
+
|
| 60 |
+
generated_audio_files = []
|
| 61 |
+
|
| 62 |
+
llama_type = args.llama_type
|
| 63 |
+
llama_ckpt_dir = os.path.join(args.llama_dir, llama_type)
|
| 64 |
+
llama_tokenzier_path = args.llama_dir
|
| 65 |
+
model = M2UGen(llama_ckpt_dir, llama_tokenzier_path, args, knn=False, stage=None, load_llama=False)
|
| 66 |
+
|
| 67 |
+
print("Loading Model Checkpoint")
|
| 68 |
+
checkpoint = torch.load(args.model, map_location='cpu')
|
| 69 |
+
|
| 70 |
+
new_ckpt = {}
|
| 71 |
+
for key, value in checkpoint['model'].items():
|
| 72 |
+
if "generation_model" in key:
|
| 73 |
+
continue
|
| 74 |
+
key = key.replace("module.", "")
|
| 75 |
+
new_ckpt[key] = value
|
| 76 |
+
|
| 77 |
+
load_result = model.load_state_dict(new_ckpt, strict=False)
|
| 78 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
| 79 |
+
model.eval()
|
| 80 |
+
model.to("cuda")
|
| 81 |
+
#model.generation_model.to("cuda")
|
| 82 |
+
#model.mert_model.to("cuda")
|
| 83 |
+
#model.vit_model.to("cuda")
|
| 84 |
+
#model.vivit_model.to("cuda")
|
| 85 |
+
|
| 86 |
+
transform = transforms.Compose(
|
| 87 |
+
[transforms.ToTensor(), transforms.Lambda(lambda x: x.repeat(3, 1, 1) if x.size(0) == 1 else x)])
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def postprocess(self, y):
|
| 91 |
+
if y is None:
|
| 92 |
+
return []
|
| 93 |
+
for i, (message, response) in enumerate(y):
|
| 94 |
+
y[i] = (
|
| 95 |
+
None if message is None else mdtex2html.convert((message)),
|
| 96 |
+
None if response is None else mdtex2html.convert(response),
|
| 97 |
+
)
|
| 98 |
+
return y
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
gr.Chatbot.postprocess = postprocess
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def parse_text(text, image_path, video_path, audio_path):
|
| 105 |
+
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
| 106 |
+
outputs = text
|
| 107 |
+
lines = text.split("\n")
|
| 108 |
+
lines = [line for line in lines if line != ""]
|
| 109 |
+
count = 0
|
| 110 |
+
for i, line in enumerate(lines):
|
| 111 |
+
if "```" in line:
|
| 112 |
+
count += 1
|
| 113 |
+
items = line.split('`')
|
| 114 |
+
if count % 2 == 1:
|
| 115 |
+
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
| 116 |
+
else:
|
| 117 |
+
lines[i] = f'<br></code></pre>'
|
| 118 |
+
else:
|
| 119 |
+
if i > 0:
|
| 120 |
+
if count % 2 == 1:
|
| 121 |
+
line = line.replace("`", "\`")
|
| 122 |
+
line = line.replace("<", "<")
|
| 123 |
+
line = line.replace(">", ">")
|
| 124 |
+
line = line.replace(" ", " ")
|
| 125 |
+
line = line.replace("*", "*")
|
| 126 |
+
line = line.replace("_", "_")
|
| 127 |
+
line = line.replace("-", "-")
|
| 128 |
+
line = line.replace(".", ".")
|
| 129 |
+
line = line.replace("!", "!")
|
| 130 |
+
line = line.replace("(", "(")
|
| 131 |
+
line = line.replace(")", ")")
|
| 132 |
+
line = line.replace("$", "$")
|
| 133 |
+
lines[i] = "<br>" + line
|
| 134 |
+
text = "".join(lines) + "<br>"
|
| 135 |
+
if image_path is not None:
|
| 136 |
+
text += f'<img src="./file={image_path}" style="display: inline-block;"><br>'
|
| 137 |
+
outputs = f'<Image>{image_path}</Image> ' + outputs
|
| 138 |
+
if video_path is not None:
|
| 139 |
+
text += f' <video controls playsinline height="320" width="240" style="display: inline-block;" src="./file={video_path}"></video6><br>'
|
| 140 |
+
outputs = f'<Video>{video_path}</Video> ' + outputs
|
| 141 |
+
if audio_path is not None:
|
| 142 |
+
text += f'<audio controls playsinline><source src="./file={audio_path}" type="audio/wav"></audio><br>'
|
| 143 |
+
outputs = f'<Audio>{audio_path}</Audio> ' + outputs
|
| 144 |
+
# text = text[::-1].replace(">rb<", "", 1)[::-1]
|
| 145 |
+
text = text[:-len("<br>")].rstrip() if text.endswith("<br>") else text
|
| 146 |
+
return text, outputs
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def save_audio_to_local(audio, sec):
|
| 150 |
+
global generated_audio_files
|
| 151 |
+
if not os.path.exists('temp'):
|
| 152 |
+
os.mkdir('temp')
|
| 153 |
+
filename = os.path.join('temp', next(tempfile._get_candidate_names()) + '.wav')
|
| 154 |
+
if args.music_decoder == "audioldm2":
|
| 155 |
+
scipy.io.wavfile.write(filename, rate=16000, data=audio[0])
|
| 156 |
+
else:
|
| 157 |
+
scipy.io.wavfile.write(filename, rate=model.generation_model.config.audio_encoder.sampling_rate, data=audio)
|
| 158 |
+
generated_audio_files.append(filename)
|
| 159 |
+
return filename
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def parse_reponse(model_outputs, audio_length_in_s):
|
| 163 |
+
response = ''
|
| 164 |
+
text_outputs = []
|
| 165 |
+
for output_i, p in enumerate(model_outputs):
|
| 166 |
+
if isinstance(p, str):
|
| 167 |
+
response += p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
|
| 168 |
+
response += '<br>'
|
| 169 |
+
text_outputs.append(p.replace(' '.join([f'[AUD{i}]' for i in range(8)]), ''))
|
| 170 |
+
elif 'aud' in p.keys():
|
| 171 |
+
_temp_output = ''
|
| 172 |
+
for idx, m in enumerate(p['aud']):
|
| 173 |
+
if isinstance(m, str):
|
| 174 |
+
response += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
|
| 175 |
+
response += '<br>'
|
| 176 |
+
_temp_output += m.replace(' '.join([f'[AUD{i}]' for i in range(8)]), '')
|
| 177 |
+
else:
|
| 178 |
+
filename = save_audio_to_local(m, audio_length_in_s)
|
| 179 |
+
print(filename)
|
| 180 |
+
_temp_output = f'<Audio>{filename}</Audio> ' + _temp_output
|
| 181 |
+
response += f'<audio controls playsinline><source src="./file={filename}" type="audio/wav"></audio>'
|
| 182 |
+
text_outputs.append(_temp_output)
|
| 183 |
+
else:
|
| 184 |
+
pass
|
| 185 |
+
response = response[:-len("<br>")].rstrip() if response.endswith("<br>") else response
|
| 186 |
+
return response, text_outputs
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def reset_user_input():
|
| 190 |
+
return gr.update(value='')
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def reset_dialog():
|
| 194 |
+
return [], []
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def reset_state():
|
| 198 |
+
global generated_audio_files
|
| 199 |
+
generated_audio_files = []
|
| 200 |
+
return None, None, None, None, [], [], []
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def upload_image(conversation, chat_history, image_input):
|
| 204 |
+
input_image = Image.open(image_input.name).resize(
|
| 205 |
+
(224, 224)).convert('RGB')
|
| 206 |
+
input_image.save(image_input.name) # Overwrite with smaller image.
|
| 207 |
+
conversation += [(f'<img src="./file={image_input.name}" style="display: inline-block;">', "")]
|
| 208 |
+
return conversation, chat_history + [input_image, ""]
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def read_video_pyav(container, indices):
|
| 212 |
+
frames = []
|
| 213 |
+
container.seek(0)
|
| 214 |
+
for i, frame in enumerate(container.decode(video=0)):
|
| 215 |
+
frames.append(frame)
|
| 216 |
+
chosen_frames = []
|
| 217 |
+
for i in indices:
|
| 218 |
+
chosen_frames.append(frames[i])
|
| 219 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in chosen_frames])
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
| 223 |
+
converted_len = int(clip_len * frame_sample_rate)
|
| 224 |
+
if converted_len > seg_len:
|
| 225 |
+
converted_len = 0
|
| 226 |
+
end_idx = np.random.randint(converted_len, seg_len)
|
| 227 |
+
start_idx = end_idx - converted_len
|
| 228 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
| 229 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
| 230 |
+
return indices
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def get_video_length(filename):
|
| 234 |
+
print("Getting Video Length")
|
| 235 |
+
result = subprocess.run(["ffprobe", "-v", "error", "-show_entries",
|
| 236 |
+
"format=duration", "-of",
|
| 237 |
+
"default=noprint_wrappers=1:nokey=1", filename],
|
| 238 |
+
stdout=subprocess.PIPE,
|
| 239 |
+
stderr=subprocess.STDOUT)
|
| 240 |
+
return int(round(float(result.stdout)))
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def get_audio_length(filename):
|
| 244 |
+
return int(round(librosa.get_duration(path=filename)))
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def predict(
|
| 248 |
+
prompt_input,
|
| 249 |
+
image_path,
|
| 250 |
+
audio_path,
|
| 251 |
+
video_path,
|
| 252 |
+
chatbot,
|
| 253 |
+
top_p,
|
| 254 |
+
temperature,
|
| 255 |
+
history,
|
| 256 |
+
modality_cache,
|
| 257 |
+
audio_length_in_s):
|
| 258 |
+
global generated_audio_files
|
| 259 |
+
prompts = [llama.format_prompt(prompt_input)]
|
| 260 |
+
prompts = [model.tokenizer(x).input_ids for x in prompts]
|
| 261 |
+
print(image_path, audio_path, video_path)
|
| 262 |
+
image, audio, video = None, None, None
|
| 263 |
+
if image_path is not None:
|
| 264 |
+
image = transform(Image.open(image_path))
|
| 265 |
+
if audio_path is not None:
|
| 266 |
+
sample_rate = 24000
|
| 267 |
+
waveform, sr = torchaudio.load(audio_path)
|
| 268 |
+
if sample_rate != sr:
|
| 269 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
|
| 270 |
+
audio = torch.mean(waveform, 0)
|
| 271 |
+
if video_path is not None:
|
| 272 |
+
print("Opening Video")
|
| 273 |
+
container = av.open(video_path)
|
| 274 |
+
indices = sample_frame_indices(clip_len=32, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
|
| 275 |
+
video = read_video_pyav(container=container, indices=indices)
|
| 276 |
+
|
| 277 |
+
if len(generated_audio_files) != 0:
|
| 278 |
+
audio_length_in_s = get_audio_length(generated_audio_files[-1])
|
| 279 |
+
sample_rate = 24000
|
| 280 |
+
waveform, sr = torchaudio.load(generated_audio_files[-1])
|
| 281 |
+
if sample_rate != sr:
|
| 282 |
+
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
|
| 283 |
+
audio = torch.mean(waveform, 0)
|
| 284 |
+
audio_length_in_s = int(len(audio)//sample_rate)
|
| 285 |
+
print(f"Audio Length: {audio_length_in_s}")
|
| 286 |
+
if video_path is not None:
|
| 287 |
+
audio_length_in_s = get_video_length(video_path)
|
| 288 |
+
print(f"Video Length: {audio_length_in_s}")
|
| 289 |
+
if audio_path is not None:
|
| 290 |
+
audio_length_in_s = get_audio_length(audio_path)
|
| 291 |
+
generated_audio_files.append(audio_path)
|
| 292 |
+
print(f"Audio Length: {audio_length_in_s}")
|
| 293 |
+
|
| 294 |
+
print(image, video, audio)
|
| 295 |
+
response = model.generate(prompts, audio, image, video, 200, temperature, top_p,
|
| 296 |
+
audio_length_in_s=audio_length_in_s)
|
| 297 |
+
print(response)
|
| 298 |
+
response_chat, response_outputs = parse_reponse(response, audio_length_in_s)
|
| 299 |
+
print('text_outputs: ', response_outputs)
|
| 300 |
+
user_chat, user_outputs = parse_text(prompt_input, image_path, video_path, audio_path)
|
| 301 |
+
chatbot.append((user_chat, response_chat))
|
| 302 |
+
history.append((user_outputs, ''.join(response_outputs).replace('\n###', '')))
|
| 303 |
+
return chatbot, history, modality_cache, None, None, None,
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
with gr.Blocks() as demo:
|
| 307 |
+
gr.HTML("""
|
| 308 |
+
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; "><img src='./file=bot.png' width="50" height="50" style="margin-right: 10px;">M<sup style="line-height: 200%; font-size: 60%">2</sup>UGen</h1>
|
| 309 |
+
<h3>This is the demo page of M<sup>2</sup>UGen, a Multimodal LLM capable of Music Understanding and Generation!</h3>
|
| 310 |
+
<div style="display: flex;"><a href='https://arxiv.org/pdf/2311.11255.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></div>
|
| 311 |
+
""")
|
| 312 |
+
|
| 313 |
+
with gr.Row():
|
| 314 |
+
with gr.Column(scale=0.7, min_width=500):
|
| 315 |
+
with gr.Row():
|
| 316 |
+
chatbot = gr.Chatbot(label='M2UGen Chatbot', avatar_images=(
|
| 317 |
+
(os.path.join(os.path.dirname(__file__), 'user.png')),
|
| 318 |
+
(os.path.join(os.path.dirname(__file__), "bot.png")))).style(height=440)
|
| 319 |
+
|
| 320 |
+
with gr.Tab("User Input"):
|
| 321 |
+
with gr.Row(scale=3):
|
| 322 |
+
user_input = gr.Textbox(label="Text", placeholder="Key in something here...", lines=3)
|
| 323 |
+
with gr.Row(scale=3):
|
| 324 |
+
with gr.Column(scale=1):
|
| 325 |
+
# image_btn = gr.UploadButton("πΌοΈ Upload Image", file_types=["image"])
|
| 326 |
+
image_path = gr.Image(type="filepath",
|
| 327 |
+
label="Image") # .style(height=200) # <PIL.Image.Image image mode=RGB size=512x512 at 0x7F6E06738D90>
|
| 328 |
+
with gr.Column(scale=1):
|
| 329 |
+
audio_path = gr.Audio(type='filepath') # .style(height=200)
|
| 330 |
+
with gr.Column(scale=1):
|
| 331 |
+
video_path = gr.Video() # .style(height=200) # , value=None, interactive=True
|
| 332 |
+
with gr.Column(scale=0.3, min_width=300):
|
| 333 |
+
with gr.Group():
|
| 334 |
+
with gr.Accordion('Text Advanced Options', open=True):
|
| 335 |
+
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
|
| 336 |
+
temperature = gr.Slider(0, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
|
| 337 |
+
with gr.Accordion('Audio Advanced Options', open=False):
|
| 338 |
+
audio_length_in_s = gr.Slider(5, 30, value=30, step=1, label="The audio length in seconds",
|
| 339 |
+
interactive=True)
|
| 340 |
+
with gr.Tab("Operation"):
|
| 341 |
+
with gr.Row(scale=1):
|
| 342 |
+
submitBtn = gr.Button(value="Submit & Run", variant="primary")
|
| 343 |
+
with gr.Row(scale=1):
|
| 344 |
+
emptyBtn = gr.Button("Clear History")
|
| 345 |
+
|
| 346 |
+
history = gr.State([])
|
| 347 |
+
modality_cache = gr.State([])
|
| 348 |
+
|
| 349 |
+
submitBtn.click(
|
| 350 |
+
predict, [
|
| 351 |
+
user_input,
|
| 352 |
+
image_path,
|
| 353 |
+
audio_path,
|
| 354 |
+
video_path,
|
| 355 |
+
chatbot,
|
| 356 |
+
top_p,
|
| 357 |
+
temperature,
|
| 358 |
+
history,
|
| 359 |
+
modality_cache,
|
| 360 |
+
audio_length_in_s
|
| 361 |
+
], [
|
| 362 |
+
chatbot,
|
| 363 |
+
history,
|
| 364 |
+
modality_cache,
|
| 365 |
+
image_path,
|
| 366 |
+
audio_path,
|
| 367 |
+
video_path
|
| 368 |
+
],
|
| 369 |
+
show_progress=True
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
submitBtn.click(reset_user_input, [], [user_input])
|
| 373 |
+
emptyBtn.click(reset_state, outputs=[
|
| 374 |
+
image_path,
|
| 375 |
+
audio_path,
|
| 376 |
+
video_path,
|
| 377 |
+
chatbot,
|
| 378 |
+
history,
|
| 379 |
+
modality_cache
|
| 380 |
+
], show_progress=True)
|
| 381 |
+
|
| 382 |
+
demo.queue().launch(share=True, inbrowser=True, server_name='0.0.0.0', server_port=24000)
|
bot.png
ADDED
|
user.png
ADDED
|