Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		Atin Sakkeer Hussain
		
	commited on
		
		
					Commit 
							
							Β·
						
						b5e6f78
	
1
								Parent(s):
							
							795ce43
								
Add Model
Browse files- util/.ipynb_checkpoints/misc-checkpoint.py +422 -0
- util/lr_sched.py +21 -0
- util/misc.py +422 -0
    	
        util/.ipynb_checkpoints/misc-checkpoint.py
    ADDED
    
    | @@ -0,0 +1,422 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
            # --------------------------------------------------------
         | 
| 7 | 
            +
            # References:
         | 
| 8 | 
            +
            # DeiT: https://github.com/facebookresearch/deit
         | 
| 9 | 
            +
            # BEiT: https://github.com/microsoft/unilm/tree/master/beit
         | 
| 10 | 
            +
            # --------------------------------------------------------
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import builtins
         | 
| 13 | 
            +
            import datetime
         | 
| 14 | 
            +
            import os
         | 
| 15 | 
            +
            import time
         | 
| 16 | 
            +
            from collections import defaultdict, deque
         | 
| 17 | 
            +
            from pathlib import Path
         | 
| 18 | 
            +
            import urllib
         | 
| 19 | 
            +
            from tqdm import tqdm
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
            import torch.utils.data
         | 
| 23 | 
            +
            import torch.distributed as dist
         | 
| 24 | 
            +
            from torch import inf
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class SmoothedValue(object):
         | 
| 28 | 
            +
                """Track a series of values and provide access to smoothed values over a
         | 
| 29 | 
            +
                window or the global series average.
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def __init__(self, window_size=20, fmt=None):
         | 
| 33 | 
            +
                    if fmt is None:
         | 
| 34 | 
            +
                        fmt = "{median:.4f} ({global_avg:.4f})"
         | 
| 35 | 
            +
                    self.deque = deque(maxlen=window_size)
         | 
| 36 | 
            +
                    self.total = 0.0
         | 
| 37 | 
            +
                    self.count = 0
         | 
| 38 | 
            +
                    self.fmt = fmt
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def update(self, value, n=1):
         | 
| 41 | 
            +
                    self.deque.append(value)
         | 
| 42 | 
            +
                    self.count += n
         | 
| 43 | 
            +
                    self.total += value * n
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def synchronize_between_processes(self):
         | 
| 46 | 
            +
                    """
         | 
| 47 | 
            +
                    Warning: does not synchronize the deque!
         | 
| 48 | 
            +
                    """
         | 
| 49 | 
            +
                    if not is_dist_avail_and_initialized():
         | 
| 50 | 
            +
                        return
         | 
| 51 | 
            +
                    t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
         | 
| 52 | 
            +
                    dist.barrier()
         | 
| 53 | 
            +
                    dist.all_reduce(t)
         | 
| 54 | 
            +
                    t = t.tolist()
         | 
| 55 | 
            +
                    self.count = int(t[0])
         | 
| 56 | 
            +
                    self.total = t[1]
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                @property
         | 
| 59 | 
            +
                def median(self):
         | 
| 60 | 
            +
                    d = torch.tensor(list(self.deque))
         | 
| 61 | 
            +
                    return d.median().item()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                @property
         | 
| 64 | 
            +
                def avg(self):
         | 
| 65 | 
            +
                    d = torch.tensor(list(self.deque), dtype=torch.float32)
         | 
| 66 | 
            +
                    return d.mean().item()
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                @property
         | 
| 69 | 
            +
                def global_avg(self):
         | 
| 70 | 
            +
                    return self.total / self.count
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                @property
         | 
| 73 | 
            +
                def max(self):
         | 
| 74 | 
            +
                    return max(self.deque)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                @property
         | 
| 77 | 
            +
                def value(self):
         | 
| 78 | 
            +
                    return self.deque[-1]
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def __str__(self):
         | 
| 81 | 
            +
                    return self.fmt.format(
         | 
| 82 | 
            +
                        median=self.median,
         | 
| 83 | 
            +
                        avg=self.avg,
         | 
| 84 | 
            +
                        global_avg=self.global_avg,
         | 
| 85 | 
            +
                        max=self.max,
         | 
| 86 | 
            +
                        value=self.value)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            class MetricLogger(object):
         | 
| 90 | 
            +
                def __init__(self, delimiter="\t"):
         | 
| 91 | 
            +
                    self.meters = defaultdict(SmoothedValue)
         | 
| 92 | 
            +
                    self.delimiter = delimiter
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def update(self, **kwargs):
         | 
| 95 | 
            +
                    for k, v in kwargs.items():
         | 
| 96 | 
            +
                        if v is None:
         | 
| 97 | 
            +
                            continue
         | 
| 98 | 
            +
                        if isinstance(v, torch.Tensor):
         | 
| 99 | 
            +
                            v = v.item()
         | 
| 100 | 
            +
                        assert isinstance(v, (float, int))
         | 
| 101 | 
            +
                        self.meters[k].update(v)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def __getattr__(self, attr):
         | 
| 104 | 
            +
                    if attr in self.meters:
         | 
| 105 | 
            +
                        return self.meters[attr]
         | 
| 106 | 
            +
                    if attr in self.__dict__:
         | 
| 107 | 
            +
                        return self.__dict__[attr]
         | 
| 108 | 
            +
                    raise AttributeError("'{}' object has no attribute '{}'".format(
         | 
| 109 | 
            +
                        type(self).__name__, attr))
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def __str__(self):
         | 
| 112 | 
            +
                    loss_str = []
         | 
| 113 | 
            +
                    for name, meter in self.meters.items():
         | 
| 114 | 
            +
                        loss_str.append(
         | 
| 115 | 
            +
                            "{}: {}".format(name, str(meter))
         | 
| 116 | 
            +
                        )
         | 
| 117 | 
            +
                    return self.delimiter.join(loss_str)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def synchronize_between_processes(self):
         | 
| 120 | 
            +
                    for meter in self.meters.values():
         | 
| 121 | 
            +
                        meter.synchronize_between_processes()
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def add_meter(self, name, meter):
         | 
| 124 | 
            +
                    self.meters[name] = meter
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def log_every(self, iterable, print_freq, header=None):
         | 
| 127 | 
            +
                    i = 0
         | 
| 128 | 
            +
                    if not header:
         | 
| 129 | 
            +
                        header = ''
         | 
| 130 | 
            +
                    start_time = time.time()
         | 
| 131 | 
            +
                    end = time.time()
         | 
| 132 | 
            +
                    iter_time = SmoothedValue(fmt='{avg:.4f}')
         | 
| 133 | 
            +
                    data_time = SmoothedValue(fmt='{avg:.4f}')
         | 
| 134 | 
            +
                    space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
         | 
| 135 | 
            +
                    log_msg = [
         | 
| 136 | 
            +
                        header,
         | 
| 137 | 
            +
                        '[{0' + space_fmt + '}/{1}]',
         | 
| 138 | 
            +
                        'eta: {eta}',
         | 
| 139 | 
            +
                        '{meters}',
         | 
| 140 | 
            +
                        'time: {time}',
         | 
| 141 | 
            +
                        'data: {data}'
         | 
| 142 | 
            +
                    ]
         | 
| 143 | 
            +
                    if torch.cuda.is_available():
         | 
| 144 | 
            +
                        log_msg.append('max mem: {memory:.0f}')
         | 
| 145 | 
            +
                    log_msg = self.delimiter.join(log_msg)
         | 
| 146 | 
            +
                    MB = 1024.0 * 1024.0
         | 
| 147 | 
            +
                    for obj in iterable:
         | 
| 148 | 
            +
                        data_time.update(time.time() - end)
         | 
| 149 | 
            +
                        yield obj
         | 
| 150 | 
            +
                        iter_time.update(time.time() - end)
         | 
| 151 | 
            +
                        if i % print_freq == 0 or i == len(iterable) - 1:
         | 
| 152 | 
            +
                            eta_seconds = iter_time.global_avg * (len(iterable) - i)
         | 
| 153 | 
            +
                            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
         | 
| 154 | 
            +
                            if torch.cuda.is_available():
         | 
| 155 | 
            +
                                print(log_msg.format(
         | 
| 156 | 
            +
                                    i, len(iterable), eta=eta_string,
         | 
| 157 | 
            +
                                    meters=str(self),
         | 
| 158 | 
            +
                                    time=str(iter_time), data=str(data_time),
         | 
| 159 | 
            +
                                    memory=torch.cuda.max_memory_allocated() / MB))
         | 
| 160 | 
            +
                            else:
         | 
| 161 | 
            +
                                print(log_msg.format(
         | 
| 162 | 
            +
                                    i, len(iterable), eta=eta_string,
         | 
| 163 | 
            +
                                    meters=str(self),
         | 
| 164 | 
            +
                                    time=str(iter_time), data=str(data_time)))
         | 
| 165 | 
            +
                        i += 1
         | 
| 166 | 
            +
                        end = time.time()
         | 
| 167 | 
            +
                    total_time = time.time() - start_time
         | 
| 168 | 
            +
                    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
         | 
| 169 | 
            +
                    print('{} Total time: {} ({:.4f} s / it)'.format(
         | 
| 170 | 
            +
                        header, total_time_str, total_time / len(iterable)))
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            def setup_for_distributed(is_master):
         | 
| 174 | 
            +
                """
         | 
| 175 | 
            +
                This function disables printing when not in master process
         | 
| 176 | 
            +
                """
         | 
| 177 | 
            +
                builtin_print = builtins.print
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def print(*args, **kwargs):
         | 
| 180 | 
            +
                    force = kwargs.pop('force', False)
         | 
| 181 | 
            +
                    force = force or (get_world_size() > 8)
         | 
| 182 | 
            +
                    if is_master or force:
         | 
| 183 | 
            +
                        now = datetime.datetime.now().time()
         | 
| 184 | 
            +
                        builtin_print('[{}] '.format(now), end='')  # print with time stamp
         | 
| 185 | 
            +
                        builtin_print(*args, **kwargs)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                builtins.print = print
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            def is_dist_avail_and_initialized():
         | 
| 191 | 
            +
                if not dist.is_available():
         | 
| 192 | 
            +
                    return False
         | 
| 193 | 
            +
                if not dist.is_initialized():
         | 
| 194 | 
            +
                    return False
         | 
| 195 | 
            +
                return True
         | 
| 196 | 
            +
             | 
| 197 | 
            +
             | 
| 198 | 
            +
            def get_world_size():
         | 
| 199 | 
            +
                if not is_dist_avail_and_initialized():
         | 
| 200 | 
            +
                    return 1
         | 
| 201 | 
            +
                return dist.get_world_size()
         | 
| 202 | 
            +
             | 
| 203 | 
            +
             | 
| 204 | 
            +
            def get_rank():
         | 
| 205 | 
            +
                if not is_dist_avail_and_initialized():
         | 
| 206 | 
            +
                    return 0
         | 
| 207 | 
            +
                return dist.get_rank()
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
            def is_main_process():
         | 
| 211 | 
            +
                return get_rank() == 0
         | 
| 212 | 
            +
             | 
| 213 | 
            +
             | 
| 214 | 
            +
            def save_on_master(*args, **kwargs):
         | 
| 215 | 
            +
                if is_main_process():
         | 
| 216 | 
            +
                    torch.save(*args, **kwargs)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            def init_distributed_mode(args):
         | 
| 220 | 
            +
                if args.dist_on_itp:
         | 
| 221 | 
            +
                    args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
         | 
| 222 | 
            +
                    args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
         | 
| 223 | 
            +
                    args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
         | 
| 224 | 
            +
                    args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
         | 
| 225 | 
            +
                    os.environ['LOCAL_RANK'] = str(args.gpu)
         | 
| 226 | 
            +
                    os.environ['RANK'] = str(args.rank)
         | 
| 227 | 
            +
                    os.environ['WORLD_SIZE'] = str(args.world_size)
         | 
| 228 | 
            +
                    # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
         | 
| 229 | 
            +
                elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
         | 
| 230 | 
            +
                    args.rank = int(os.environ["RANK"])
         | 
| 231 | 
            +
                    args.world_size = int(os.environ['WORLD_SIZE'])
         | 
| 232 | 
            +
                    args.gpu = int(os.environ['LOCAL_RANK'])
         | 
| 233 | 
            +
                elif 'SLURM_PROCID' in os.environ:
         | 
| 234 | 
            +
                    args.rank = int(os.environ['SLURM_PROCID'])
         | 
| 235 | 
            +
                    args.gpu = args.rank % torch.cuda.device_count()
         | 
| 236 | 
            +
                else:
         | 
| 237 | 
            +
                    print('Not using distributed mode')
         | 
| 238 | 
            +
                    setup_for_distributed(is_master=True)  # hack
         | 
| 239 | 
            +
                    args.distributed = False
         | 
| 240 | 
            +
                    return
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                args.distributed = True
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                print("GPU::", args.gpu)
         | 
| 245 | 
            +
                torch.cuda.set_device(args.gpu)
         | 
| 246 | 
            +
                args.dist_backend = 'nccl'
         | 
| 247 | 
            +
                print('| distributed init (rank {}): {}, gpu {}'.format(
         | 
| 248 | 
            +
                    args.rank, args.dist_url, args.gpu), flush=True)
         | 
| 249 | 
            +
                torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
         | 
| 250 | 
            +
                                                     world_size=args.world_size, rank=args.rank)
         | 
| 251 | 
            +
                torch.distributed.barrier()
         | 
| 252 | 
            +
                setup_for_distributed(args.rank == 0)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
             | 
| 255 | 
            +
            class NativeScalerWithGradNormCount:
         | 
| 256 | 
            +
                state_dict_key = "amp_scaler"
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def __init__(self):
         | 
| 259 | 
            +
                    self._scaler = torch.cuda.amp.GradScaler()
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
         | 
| 262 | 
            +
                    self._scaler.scale(loss).backward(create_graph=create_graph)
         | 
| 263 | 
            +
                    if update_grad:
         | 
| 264 | 
            +
                        if clip_grad is not None:
         | 
| 265 | 
            +
                            assert parameters is not None
         | 
| 266 | 
            +
                            self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
         | 
| 267 | 
            +
                            norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
         | 
| 268 | 
            +
                        else:
         | 
| 269 | 
            +
                            self._scaler.unscale_(optimizer)
         | 
| 270 | 
            +
                            norm = get_grad_norm_(parameters)
         | 
| 271 | 
            +
                        self._scaler.step(optimizer)
         | 
| 272 | 
            +
                        self._scaler.update()
         | 
| 273 | 
            +
                    else:
         | 
| 274 | 
            +
                        norm = None
         | 
| 275 | 
            +
                    return norm
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def state_dict(self):
         | 
| 278 | 
            +
                    return self._scaler.state_dict()
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                def load_state_dict(self, state_dict):
         | 
| 281 | 
            +
                    self._scaler.load_state_dict(state_dict)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
             | 
| 284 | 
            +
            def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
         | 
| 285 | 
            +
                if isinstance(parameters, torch.Tensor):
         | 
| 286 | 
            +
                    parameters = [parameters]
         | 
| 287 | 
            +
                parameters = [p for p in parameters if p.grad is not None]
         | 
| 288 | 
            +
                norm_type = float(norm_type)
         | 
| 289 | 
            +
                if len(parameters) == 0:
         | 
| 290 | 
            +
                    return torch.tensor(0.)
         | 
| 291 | 
            +
                device = parameters[0].grad.device
         | 
| 292 | 
            +
                if norm_type == inf:
         | 
| 293 | 
            +
                    total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
         | 
| 294 | 
            +
                else:
         | 
| 295 | 
            +
                    total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
         | 
| 296 | 
            +
                return total_norm
         | 
| 297 | 
            +
             | 
| 298 | 
            +
             | 
| 299 | 
            +
            def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
         | 
| 300 | 
            +
                output_dir = Path(args.output_dir)
         | 
| 301 | 
            +
                epoch_name = str(epoch)
         | 
| 302 | 
            +
                if loss_scaler is not None:
         | 
| 303 | 
            +
                    checkpoint_paths = [output_dir / ('checkpoint.pth')]
         | 
| 304 | 
            +
                    for checkpoint_path in checkpoint_paths:
         | 
| 305 | 
            +
                        to_save = {
         | 
| 306 | 
            +
                            'model': model_without_ddp.state_dict(),
         | 
| 307 | 
            +
                            'optimizer': optimizer.state_dict(),
         | 
| 308 | 
            +
                            'epoch': epoch,
         | 
| 309 | 
            +
                            'scaler': loss_scaler.state_dict(),
         | 
| 310 | 
            +
                            'args': args,
         | 
| 311 | 
            +
                        }
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                        save_on_master(to_save, checkpoint_path)
         | 
| 314 | 
            +
                else:
         | 
| 315 | 
            +
                    client_state = {'epoch': epoch}
         | 
| 316 | 
            +
                    model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
         | 
| 317 | 
            +
             | 
| 318 | 
            +
             | 
| 319 | 
            +
            def load_model(model_without_ddp, optimizer, loss_scaler, path):
         | 
| 320 | 
            +
                if path.startswith('https'):
         | 
| 321 | 
            +
                    checkpoint = torch.hub.load_state_dict_from_url(
         | 
| 322 | 
            +
                        path, map_location='cpu', check_hash=True)
         | 
| 323 | 
            +
                else:
         | 
| 324 | 
            +
                    checkpoint = torch.load(path, map_location='cpu')
         | 
| 325 | 
            +
                new_checkpoint = {}
         | 
| 326 | 
            +
                if optimizer is not None:
         | 
| 327 | 
            +
                    optimizer.load_state_dict(checkpoint['optimizer'])
         | 
| 328 | 
            +
                if loss_scaler is not None:
         | 
| 329 | 
            +
                    loss_scaler.load_state_dict(checkpoint['scaler'])
         | 
| 330 | 
            +
                print(checkpoint.keys())
         | 
| 331 | 
            +
                new_ckpt = {}
         | 
| 332 | 
            +
                for key, value in checkpoint['model'].items():
         | 
| 333 | 
            +
                    key = key.replace("module.", "")
         | 
| 334 | 
            +
                    new_ckpt[key] = value
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
         | 
| 337 | 
            +
                assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
         | 
| 338 | 
            +
                print("Load checkpoint %s" % path)
         | 
| 339 | 
            +
                return checkpoint['epoch']
         | 
| 340 | 
            +
             | 
| 341 | 
            +
             | 
| 342 | 
            +
            def all_reduce_mean(x):
         | 
| 343 | 
            +
                world_size = get_world_size()
         | 
| 344 | 
            +
                if world_size > 1:
         | 
| 345 | 
            +
                    x_reduce = torch.tensor(x).cuda()
         | 
| 346 | 
            +
                    dist.all_reduce(x_reduce)
         | 
| 347 | 
            +
                    x_reduce /= world_size
         | 
| 348 | 
            +
                    return x_reduce.item()
         | 
| 349 | 
            +
                else:
         | 
| 350 | 
            +
                    return x
         | 
| 351 | 
            +
             | 
| 352 | 
            +
             | 
| 353 | 
            +
            def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
         | 
| 354 | 
            +
                decay = []
         | 
| 355 | 
            +
                no_decay = []
         | 
| 356 | 
            +
                for name, param in model.named_parameters():
         | 
| 357 | 
            +
                    if not param.requires_grad:
         | 
| 358 | 
            +
                        continue  # frozen weights
         | 
| 359 | 
            +
                    if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
         | 
| 360 | 
            +
                        no_decay.append(param)
         | 
| 361 | 
            +
                    else:
         | 
| 362 | 
            +
                        decay.append(param)
         | 
| 363 | 
            +
                return [
         | 
| 364 | 
            +
                    {'params': no_decay, 'weight_decay': 0.},
         | 
| 365 | 
            +
                    {'params': decay, 'weight_decay': weight_decay}]
         | 
| 366 | 
            +
             | 
| 367 | 
            +
             | 
| 368 | 
            +
            class DistributedSubEpochSampler(torch.utils.data.Sampler):
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
         | 
| 371 | 
            +
                    self.dataset = dataset
         | 
| 372 | 
            +
                    self.num_replicas = num_replicas
         | 
| 373 | 
            +
                    self.rank = rank
         | 
| 374 | 
            +
                    self.shuffle = shuffle
         | 
| 375 | 
            +
                    self.split_epoch = split_epoch
         | 
| 376 | 
            +
                    self.seed = seed
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.num_samples = len(dataset) // (num_replicas * split_epoch)
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                def __len__(self):
         | 
| 381 | 
            +
                    return self.num_samples
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                def __iter__(self):
         | 
| 384 | 
            +
                    if self.shuffle:
         | 
| 385 | 
            +
                        # deterministically shuffle based on epoch and seed
         | 
| 386 | 
            +
                        g = torch.Generator()
         | 
| 387 | 
            +
                        g.manual_seed(self.seed + self.epoch // self.split_epoch)
         | 
| 388 | 
            +
                        indices = torch.randperm(len(self.dataset), generator=g).tolist()  # type: ignore[arg-type]
         | 
| 389 | 
            +
                    else:
         | 
| 390 | 
            +
                        indices = list(range(len(self.dataset)))  # type: ignore[arg-type]
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
         | 
| 393 | 
            +
                    assert len(indices) >= self.num_samples
         | 
| 394 | 
            +
                    indices = indices[:self.num_samples]
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    return iter(indices)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                def set_epoch(self, epoch):
         | 
| 399 | 
            +
                    self.epoch = epoch
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            def download(url: str, root: str):
         | 
| 402 | 
            +
                os.makedirs(root, exist_ok=True)
         | 
| 403 | 
            +
                filename = os.path.basename(url)
         | 
| 404 | 
            +
                download_target = os.path.join(root, filename)
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                if os.path.exists(download_target) and not os.path.isfile(download_target):
         | 
| 407 | 
            +
                    raise RuntimeError(f"{download_target} exists and is not a regular file")
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                if os.path.isfile(download_target):
         | 
| 410 | 
            +
                    return download_target
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
         | 
| 413 | 
            +
                    with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
         | 
| 414 | 
            +
                        while True:
         | 
| 415 | 
            +
                            buffer = source.read(8192)
         | 
| 416 | 
            +
                            if not buffer:
         | 
| 417 | 
            +
                                break
         | 
| 418 | 
            +
                            output.write(buffer)
         | 
| 419 | 
            +
                            loop.update(len(buffer))
         | 
| 420 | 
            +
             | 
| 421 | 
            +
             | 
| 422 | 
            +
                return download_target
         | 
    	
        util/lr_sched.py
    ADDED
    
    | @@ -0,0 +1,21 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import math
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            def adjust_learning_rate(optimizer, epoch, args):
         | 
| 10 | 
            +
                """Decay the learning rate with half-cycle cosine after warmup"""
         | 
| 11 | 
            +
                if epoch < args.warmup_epochs:
         | 
| 12 | 
            +
                    lr = args.lr * epoch / args.warmup_epochs 
         | 
| 13 | 
            +
                else:
         | 
| 14 | 
            +
                    lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
         | 
| 15 | 
            +
                        (1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
         | 
| 16 | 
            +
                for param_group in optimizer.param_groups:
         | 
| 17 | 
            +
                    if "lr_scale" in param_group:
         | 
| 18 | 
            +
                        param_group["lr"] = lr * param_group["lr_scale"]
         | 
| 19 | 
            +
                    else:
         | 
| 20 | 
            +
                        param_group["lr"] = lr
         | 
| 21 | 
            +
                return lr
         | 
    	
        util/misc.py
    ADDED
    
    | @@ -0,0 +1,422 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) Meta Platforms, Inc. and affiliates.
         | 
| 2 | 
            +
            # All rights reserved.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # This source code is licensed under the license found in the
         | 
| 5 | 
            +
            # LICENSE file in the root directory of this source tree.
         | 
| 6 | 
            +
            # --------------------------------------------------------
         | 
| 7 | 
            +
            # References:
         | 
| 8 | 
            +
            # DeiT: https://github.com/facebookresearch/deit
         | 
| 9 | 
            +
            # BEiT: https://github.com/microsoft/unilm/tree/master/beit
         | 
| 10 | 
            +
            # --------------------------------------------------------
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import builtins
         | 
| 13 | 
            +
            import datetime
         | 
| 14 | 
            +
            import os
         | 
| 15 | 
            +
            import time
         | 
| 16 | 
            +
            from collections import defaultdict, deque
         | 
| 17 | 
            +
            from pathlib import Path
         | 
| 18 | 
            +
            import urllib
         | 
| 19 | 
            +
            from tqdm import tqdm
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            import torch
         | 
| 22 | 
            +
            import torch.utils.data
         | 
| 23 | 
            +
            import torch.distributed as dist
         | 
| 24 | 
            +
            from torch import inf
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class SmoothedValue(object):
         | 
| 28 | 
            +
                """Track a series of values and provide access to smoothed values over a
         | 
| 29 | 
            +
                window or the global series average.
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                def __init__(self, window_size=20, fmt=None):
         | 
| 33 | 
            +
                    if fmt is None:
         | 
| 34 | 
            +
                        fmt = "{median:.4f} ({global_avg:.4f})"
         | 
| 35 | 
            +
                    self.deque = deque(maxlen=window_size)
         | 
| 36 | 
            +
                    self.total = 0.0
         | 
| 37 | 
            +
                    self.count = 0
         | 
| 38 | 
            +
                    self.fmt = fmt
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                def update(self, value, n=1):
         | 
| 41 | 
            +
                    self.deque.append(value)
         | 
| 42 | 
            +
                    self.count += n
         | 
| 43 | 
            +
                    self.total += value * n
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def synchronize_between_processes(self):
         | 
| 46 | 
            +
                    """
         | 
| 47 | 
            +
                    Warning: does not synchronize the deque!
         | 
| 48 | 
            +
                    """
         | 
| 49 | 
            +
                    if not is_dist_avail_and_initialized():
         | 
| 50 | 
            +
                        return
         | 
| 51 | 
            +
                    t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
         | 
| 52 | 
            +
                    dist.barrier()
         | 
| 53 | 
            +
                    dist.all_reduce(t)
         | 
| 54 | 
            +
                    t = t.tolist()
         | 
| 55 | 
            +
                    self.count = int(t[0])
         | 
| 56 | 
            +
                    self.total = t[1]
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                @property
         | 
| 59 | 
            +
                def median(self):
         | 
| 60 | 
            +
                    d = torch.tensor(list(self.deque))
         | 
| 61 | 
            +
                    return d.median().item()
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                @property
         | 
| 64 | 
            +
                def avg(self):
         | 
| 65 | 
            +
                    d = torch.tensor(list(self.deque), dtype=torch.float32)
         | 
| 66 | 
            +
                    return d.mean().item()
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                @property
         | 
| 69 | 
            +
                def global_avg(self):
         | 
| 70 | 
            +
                    return self.total / self.count
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                @property
         | 
| 73 | 
            +
                def max(self):
         | 
| 74 | 
            +
                    return max(self.deque)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                @property
         | 
| 77 | 
            +
                def value(self):
         | 
| 78 | 
            +
                    return self.deque[-1]
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                def __str__(self):
         | 
| 81 | 
            +
                    return self.fmt.format(
         | 
| 82 | 
            +
                        median=self.median,
         | 
| 83 | 
            +
                        avg=self.avg,
         | 
| 84 | 
            +
                        global_avg=self.global_avg,
         | 
| 85 | 
            +
                        max=self.max,
         | 
| 86 | 
            +
                        value=self.value)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            class MetricLogger(object):
         | 
| 90 | 
            +
                def __init__(self, delimiter="\t"):
         | 
| 91 | 
            +
                    self.meters = defaultdict(SmoothedValue)
         | 
| 92 | 
            +
                    self.delimiter = delimiter
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                def update(self, **kwargs):
         | 
| 95 | 
            +
                    for k, v in kwargs.items():
         | 
| 96 | 
            +
                        if v is None:
         | 
| 97 | 
            +
                            continue
         | 
| 98 | 
            +
                        if isinstance(v, torch.Tensor):
         | 
| 99 | 
            +
                            v = v.item()
         | 
| 100 | 
            +
                        assert isinstance(v, (float, int))
         | 
| 101 | 
            +
                        self.meters[k].update(v)
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                def __getattr__(self, attr):
         | 
| 104 | 
            +
                    if attr in self.meters:
         | 
| 105 | 
            +
                        return self.meters[attr]
         | 
| 106 | 
            +
                    if attr in self.__dict__:
         | 
| 107 | 
            +
                        return self.__dict__[attr]
         | 
| 108 | 
            +
                    raise AttributeError("'{}' object has no attribute '{}'".format(
         | 
| 109 | 
            +
                        type(self).__name__, attr))
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                def __str__(self):
         | 
| 112 | 
            +
                    loss_str = []
         | 
| 113 | 
            +
                    for name, meter in self.meters.items():
         | 
| 114 | 
            +
                        loss_str.append(
         | 
| 115 | 
            +
                            "{}: {}".format(name, str(meter))
         | 
| 116 | 
            +
                        )
         | 
| 117 | 
            +
                    return self.delimiter.join(loss_str)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def synchronize_between_processes(self):
         | 
| 120 | 
            +
                    for meter in self.meters.values():
         | 
| 121 | 
            +
                        meter.synchronize_between_processes()
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                def add_meter(self, name, meter):
         | 
| 124 | 
            +
                    self.meters[name] = meter
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def log_every(self, iterable, print_freq, header=None):
         | 
| 127 | 
            +
                    i = 0
         | 
| 128 | 
            +
                    if not header:
         | 
| 129 | 
            +
                        header = ''
         | 
| 130 | 
            +
                    start_time = time.time()
         | 
| 131 | 
            +
                    end = time.time()
         | 
| 132 | 
            +
                    iter_time = SmoothedValue(fmt='{avg:.4f}')
         | 
| 133 | 
            +
                    data_time = SmoothedValue(fmt='{avg:.4f}')
         | 
| 134 | 
            +
                    space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
         | 
| 135 | 
            +
                    log_msg = [
         | 
| 136 | 
            +
                        header,
         | 
| 137 | 
            +
                        '[{0' + space_fmt + '}/{1}]',
         | 
| 138 | 
            +
                        'eta: {eta}',
         | 
| 139 | 
            +
                        '{meters}',
         | 
| 140 | 
            +
                        'time: {time}',
         | 
| 141 | 
            +
                        'data: {data}'
         | 
| 142 | 
            +
                    ]
         | 
| 143 | 
            +
                    if torch.cuda.is_available():
         | 
| 144 | 
            +
                        log_msg.append('max mem: {memory:.0f}')
         | 
| 145 | 
            +
                    log_msg = self.delimiter.join(log_msg)
         | 
| 146 | 
            +
                    MB = 1024.0 * 1024.0
         | 
| 147 | 
            +
                    for obj in iterable:
         | 
| 148 | 
            +
                        data_time.update(time.time() - end)
         | 
| 149 | 
            +
                        yield obj
         | 
| 150 | 
            +
                        iter_time.update(time.time() - end)
         | 
| 151 | 
            +
                        if i % print_freq == 0 or i == len(iterable) - 1:
         | 
| 152 | 
            +
                            eta_seconds = iter_time.global_avg * (len(iterable) - i)
         | 
| 153 | 
            +
                            eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
         | 
| 154 | 
            +
                            if torch.cuda.is_available():
         | 
| 155 | 
            +
                                print(log_msg.format(
         | 
| 156 | 
            +
                                    i, len(iterable), eta=eta_string,
         | 
| 157 | 
            +
                                    meters=str(self),
         | 
| 158 | 
            +
                                    time=str(iter_time), data=str(data_time),
         | 
| 159 | 
            +
                                    memory=torch.cuda.max_memory_allocated() / MB))
         | 
| 160 | 
            +
                            else:
         | 
| 161 | 
            +
                                print(log_msg.format(
         | 
| 162 | 
            +
                                    i, len(iterable), eta=eta_string,
         | 
| 163 | 
            +
                                    meters=str(self),
         | 
| 164 | 
            +
                                    time=str(iter_time), data=str(data_time)))
         | 
| 165 | 
            +
                        i += 1
         | 
| 166 | 
            +
                        end = time.time()
         | 
| 167 | 
            +
                    total_time = time.time() - start_time
         | 
| 168 | 
            +
                    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
         | 
| 169 | 
            +
                    print('{} Total time: {} ({:.4f} s / it)'.format(
         | 
| 170 | 
            +
                        header, total_time_str, total_time / len(iterable)))
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            def setup_for_distributed(is_master):
         | 
| 174 | 
            +
                """
         | 
| 175 | 
            +
                This function disables printing when not in master process
         | 
| 176 | 
            +
                """
         | 
| 177 | 
            +
                builtin_print = builtins.print
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                def print(*args, **kwargs):
         | 
| 180 | 
            +
                    force = kwargs.pop('force', False)
         | 
| 181 | 
            +
                    force = force or (get_world_size() > 8)
         | 
| 182 | 
            +
                    if is_master or force:
         | 
| 183 | 
            +
                        now = datetime.datetime.now().time()
         | 
| 184 | 
            +
                        builtin_print('[{}] '.format(now), end='')  # print with time stamp
         | 
| 185 | 
            +
                        builtin_print(*args, **kwargs)
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                builtins.print = print
         | 
| 188 | 
            +
             | 
| 189 | 
            +
             | 
| 190 | 
            +
            def is_dist_avail_and_initialized():
         | 
| 191 | 
            +
                if not dist.is_available():
         | 
| 192 | 
            +
                    return False
         | 
| 193 | 
            +
                if not dist.is_initialized():
         | 
| 194 | 
            +
                    return False
         | 
| 195 | 
            +
                return True
         | 
| 196 | 
            +
             | 
| 197 | 
            +
             | 
| 198 | 
            +
            def get_world_size():
         | 
| 199 | 
            +
                if not is_dist_avail_and_initialized():
         | 
| 200 | 
            +
                    return 1
         | 
| 201 | 
            +
                return dist.get_world_size()
         | 
| 202 | 
            +
             | 
| 203 | 
            +
             | 
| 204 | 
            +
            def get_rank():
         | 
| 205 | 
            +
                if not is_dist_avail_and_initialized():
         | 
| 206 | 
            +
                    return 0
         | 
| 207 | 
            +
                return dist.get_rank()
         | 
| 208 | 
            +
             | 
| 209 | 
            +
             | 
| 210 | 
            +
            def is_main_process():
         | 
| 211 | 
            +
                return get_rank() == 0
         | 
| 212 | 
            +
             | 
| 213 | 
            +
             | 
| 214 | 
            +
            def save_on_master(*args, **kwargs):
         | 
| 215 | 
            +
                if is_main_process():
         | 
| 216 | 
            +
                    torch.save(*args, **kwargs)
         | 
| 217 | 
            +
             | 
| 218 | 
            +
             | 
| 219 | 
            +
            def init_distributed_mode(args):
         | 
| 220 | 
            +
                if args.dist_on_itp:
         | 
| 221 | 
            +
                    args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
         | 
| 222 | 
            +
                    args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
         | 
| 223 | 
            +
                    args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
         | 
| 224 | 
            +
                    args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
         | 
| 225 | 
            +
                    os.environ['LOCAL_RANK'] = str(args.gpu)
         | 
| 226 | 
            +
                    os.environ['RANK'] = str(args.rank)
         | 
| 227 | 
            +
                    os.environ['WORLD_SIZE'] = str(args.world_size)
         | 
| 228 | 
            +
                    # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
         | 
| 229 | 
            +
                elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
         | 
| 230 | 
            +
                    args.rank = int(os.environ["RANK"])
         | 
| 231 | 
            +
                    args.world_size = int(os.environ['WORLD_SIZE'])
         | 
| 232 | 
            +
                    args.gpu = int(os.environ['LOCAL_RANK'])
         | 
| 233 | 
            +
                elif 'SLURM_PROCID' in os.environ:
         | 
| 234 | 
            +
                    args.rank = int(os.environ['SLURM_PROCID'])
         | 
| 235 | 
            +
                    args.gpu = args.rank % torch.cuda.device_count()
         | 
| 236 | 
            +
                else:
         | 
| 237 | 
            +
                    print('Not using distributed mode')
         | 
| 238 | 
            +
                    setup_for_distributed(is_master=True)  # hack
         | 
| 239 | 
            +
                    args.distributed = False
         | 
| 240 | 
            +
                    return
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                args.distributed = True
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                print("GPU::", args.gpu)
         | 
| 245 | 
            +
                torch.cuda.set_device(args.gpu)
         | 
| 246 | 
            +
                args.dist_backend = 'nccl'
         | 
| 247 | 
            +
                print('| distributed init (rank {}): {}, gpu {}'.format(
         | 
| 248 | 
            +
                    args.rank, args.dist_url, args.gpu), flush=True)
         | 
| 249 | 
            +
                torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
         | 
| 250 | 
            +
                                                     world_size=args.world_size, rank=args.rank)
         | 
| 251 | 
            +
                torch.distributed.barrier()
         | 
| 252 | 
            +
                setup_for_distributed(args.rank == 0)
         | 
| 253 | 
            +
             | 
| 254 | 
            +
             | 
| 255 | 
            +
            class NativeScalerWithGradNormCount:
         | 
| 256 | 
            +
                state_dict_key = "amp_scaler"
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def __init__(self):
         | 
| 259 | 
            +
                    self._scaler = torch.cuda.amp.GradScaler()
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
         | 
| 262 | 
            +
                    self._scaler.scale(loss).backward(create_graph=create_graph)
         | 
| 263 | 
            +
                    if update_grad:
         | 
| 264 | 
            +
                        if clip_grad is not None:
         | 
| 265 | 
            +
                            assert parameters is not None
         | 
| 266 | 
            +
                            self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
         | 
| 267 | 
            +
                            norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
         | 
| 268 | 
            +
                        else:
         | 
| 269 | 
            +
                            self._scaler.unscale_(optimizer)
         | 
| 270 | 
            +
                            norm = get_grad_norm_(parameters)
         | 
| 271 | 
            +
                        self._scaler.step(optimizer)
         | 
| 272 | 
            +
                        self._scaler.update()
         | 
| 273 | 
            +
                    else:
         | 
| 274 | 
            +
                        norm = None
         | 
| 275 | 
            +
                    return norm
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                def state_dict(self):
         | 
| 278 | 
            +
                    return self._scaler.state_dict()
         | 
| 279 | 
            +
             | 
| 280 | 
            +
                def load_state_dict(self, state_dict):
         | 
| 281 | 
            +
                    self._scaler.load_state_dict(state_dict)
         | 
| 282 | 
            +
             | 
| 283 | 
            +
             | 
| 284 | 
            +
            def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
         | 
| 285 | 
            +
                if isinstance(parameters, torch.Tensor):
         | 
| 286 | 
            +
                    parameters = [parameters]
         | 
| 287 | 
            +
                parameters = [p for p in parameters if p.grad is not None]
         | 
| 288 | 
            +
                norm_type = float(norm_type)
         | 
| 289 | 
            +
                if len(parameters) == 0:
         | 
| 290 | 
            +
                    return torch.tensor(0.)
         | 
| 291 | 
            +
                device = parameters[0].grad.device
         | 
| 292 | 
            +
                if norm_type == inf:
         | 
| 293 | 
            +
                    total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
         | 
| 294 | 
            +
                else:
         | 
| 295 | 
            +
                    total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
         | 
| 296 | 
            +
                return total_norm
         | 
| 297 | 
            +
             | 
| 298 | 
            +
             | 
| 299 | 
            +
            def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
         | 
| 300 | 
            +
                output_dir = Path(args.output_dir)
         | 
| 301 | 
            +
                epoch_name = str(epoch)
         | 
| 302 | 
            +
                if loss_scaler is not None:
         | 
| 303 | 
            +
                    checkpoint_paths = [output_dir / ('checkpoint.pth')]
         | 
| 304 | 
            +
                    for checkpoint_path in checkpoint_paths:
         | 
| 305 | 
            +
                        to_save = {
         | 
| 306 | 
            +
                            'model': model_without_ddp.state_dict(),
         | 
| 307 | 
            +
                            'optimizer': optimizer.state_dict(),
         | 
| 308 | 
            +
                            'epoch': epoch,
         | 
| 309 | 
            +
                            'scaler': loss_scaler.state_dict(),
         | 
| 310 | 
            +
                            'args': args,
         | 
| 311 | 
            +
                        }
         | 
| 312 | 
            +
             | 
| 313 | 
            +
                        save_on_master(to_save, checkpoint_path)
         | 
| 314 | 
            +
                else:
         | 
| 315 | 
            +
                    client_state = {'epoch': epoch}
         | 
| 316 | 
            +
                    model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
         | 
| 317 | 
            +
             | 
| 318 | 
            +
             | 
| 319 | 
            +
            def load_model(model_without_ddp, optimizer, loss_scaler, path):
         | 
| 320 | 
            +
                if path.startswith('https'):
         | 
| 321 | 
            +
                    checkpoint = torch.hub.load_state_dict_from_url(
         | 
| 322 | 
            +
                        path, map_location='cpu', check_hash=True)
         | 
| 323 | 
            +
                else:
         | 
| 324 | 
            +
                    checkpoint = torch.load(path, map_location='cpu')
         | 
| 325 | 
            +
                new_checkpoint = {}
         | 
| 326 | 
            +
                if optimizer is not None:
         | 
| 327 | 
            +
                    optimizer.load_state_dict(checkpoint['optimizer'])
         | 
| 328 | 
            +
                if loss_scaler is not None:
         | 
| 329 | 
            +
                    loss_scaler.load_state_dict(checkpoint['scaler'])
         | 
| 330 | 
            +
                print(checkpoint.keys())
         | 
| 331 | 
            +
                new_ckpt = {}
         | 
| 332 | 
            +
                for key, value in checkpoint['model'].items():
         | 
| 333 | 
            +
                    key = key.replace("module.", "")
         | 
| 334 | 
            +
                    new_ckpt[key] = value
         | 
| 335 | 
            +
             | 
| 336 | 
            +
                load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
         | 
| 337 | 
            +
                assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
         | 
| 338 | 
            +
                print("Load checkpoint %s" % path)
         | 
| 339 | 
            +
                return checkpoint['epoch']
         | 
| 340 | 
            +
             | 
| 341 | 
            +
             | 
| 342 | 
            +
            def all_reduce_mean(x):
         | 
| 343 | 
            +
                world_size = get_world_size()
         | 
| 344 | 
            +
                if world_size > 1:
         | 
| 345 | 
            +
                    x_reduce = torch.tensor(x).cuda()
         | 
| 346 | 
            +
                    dist.all_reduce(x_reduce)
         | 
| 347 | 
            +
                    x_reduce /= world_size
         | 
| 348 | 
            +
                    return x_reduce.item()
         | 
| 349 | 
            +
                else:
         | 
| 350 | 
            +
                    return x
         | 
| 351 | 
            +
             | 
| 352 | 
            +
             | 
| 353 | 
            +
            def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
         | 
| 354 | 
            +
                decay = []
         | 
| 355 | 
            +
                no_decay = []
         | 
| 356 | 
            +
                for name, param in model.named_parameters():
         | 
| 357 | 
            +
                    if not param.requires_grad:
         | 
| 358 | 
            +
                        continue  # frozen weights
         | 
| 359 | 
            +
                    if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
         | 
| 360 | 
            +
                        no_decay.append(param)
         | 
| 361 | 
            +
                    else:
         | 
| 362 | 
            +
                        decay.append(param)
         | 
| 363 | 
            +
                return [
         | 
| 364 | 
            +
                    {'params': no_decay, 'weight_decay': 0.},
         | 
| 365 | 
            +
                    {'params': decay, 'weight_decay': weight_decay}]
         | 
| 366 | 
            +
             | 
| 367 | 
            +
             | 
| 368 | 
            +
            class DistributedSubEpochSampler(torch.utils.data.Sampler):
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
         | 
| 371 | 
            +
                    self.dataset = dataset
         | 
| 372 | 
            +
                    self.num_replicas = num_replicas
         | 
| 373 | 
            +
                    self.rank = rank
         | 
| 374 | 
            +
                    self.shuffle = shuffle
         | 
| 375 | 
            +
                    self.split_epoch = split_epoch
         | 
| 376 | 
            +
                    self.seed = seed
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    self.num_samples = len(dataset) // (num_replicas * split_epoch)
         | 
| 379 | 
            +
             | 
| 380 | 
            +
                def __len__(self):
         | 
| 381 | 
            +
                    return self.num_samples
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                def __iter__(self):
         | 
| 384 | 
            +
                    if self.shuffle:
         | 
| 385 | 
            +
                        # deterministically shuffle based on epoch and seed
         | 
| 386 | 
            +
                        g = torch.Generator()
         | 
| 387 | 
            +
                        g.manual_seed(self.seed + self.epoch // self.split_epoch)
         | 
| 388 | 
            +
                        indices = torch.randperm(len(self.dataset), generator=g).tolist()  # type: ignore[arg-type]
         | 
| 389 | 
            +
                    else:
         | 
| 390 | 
            +
                        indices = list(range(len(self.dataset)))  # type: ignore[arg-type]
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
         | 
| 393 | 
            +
                    assert len(indices) >= self.num_samples
         | 
| 394 | 
            +
                    indices = indices[:self.num_samples]
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                    return iter(indices)
         | 
| 397 | 
            +
             | 
| 398 | 
            +
                def set_epoch(self, epoch):
         | 
| 399 | 
            +
                    self.epoch = epoch
         | 
| 400 | 
            +
             | 
| 401 | 
            +
            def download(url: str, root: str):
         | 
| 402 | 
            +
                os.makedirs(root, exist_ok=True)
         | 
| 403 | 
            +
                filename = os.path.basename(url)
         | 
| 404 | 
            +
                download_target = os.path.join(root, filename)
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                if os.path.exists(download_target) and not os.path.isfile(download_target):
         | 
| 407 | 
            +
                    raise RuntimeError(f"{download_target} exists and is not a regular file")
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                if os.path.isfile(download_target):
         | 
| 410 | 
            +
                    return download_target
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
         | 
| 413 | 
            +
                    with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
         | 
| 414 | 
            +
                        while True:
         | 
| 415 | 
            +
                            buffer = source.read(8192)
         | 
| 416 | 
            +
                            if not buffer:
         | 
| 417 | 
            +
                                break
         | 
| 418 | 
            +
                            output.write(buffer)
         | 
| 419 | 
            +
                            loop.update(len(buffer))
         | 
| 420 | 
            +
             | 
| 421 | 
            +
             | 
| 422 | 
            +
                return download_target
         | 
