File size: 5,106 Bytes
2c1ff7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import json
import numpy as np
from torch import nn 
import torch
from torch.utils.data import random_split, DataLoader
from z_dataops import NamesDataset, transform, proxy_collate_batch
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import string

class NameToLanguages(nn.Module):
    def __init__(self, feature_size=26, n_classes=18):
        super().__init__()

        # create simple architecture 
        self.net_rnn = nn.RNN(input_size=feature_size, hidden_size=128, batch_first=True)
        self.net_linear = nn.Linear(in_features=128, out_features=n_classes)
        
    def forward(self, x): 
        rnn_out, last_ts = self.net_rnn(x)
        output = self.net_linear(last_ts[0])
        return output
    
def training(model: nn.Module, train_batch: list, optimizer, loss_fn): 
    model.train() 
    batch_loss = 0

    for x, y in train_batch: 
        # predict
        y_pred = model(x) 
        # compute loss
        curr_loss = loss_fn(y_pred, y)
        batch_loss += curr_loss

    # reset grad
    optimizer.zero_grad()
    # calculate grad
    batch_loss.backward()
    # nn.utils.clip_grad_norm_(model.parameters(), 3)
    # step 
    optimizer.step()

    return batch_loss.item() / len(train_batch)

def validation(model, dl: DataLoader, loss_fn): 
    model.eval() 
    batch_loss = 0
    with torch.no_grad():
        for item in dl: 
            for x, y in item: 
                # predict 
                y_pred = model(x) 
                # loss
                curr_loss = loss_fn(y_pred, y)
                batch_loss += curr_loss
    return batch_loss.item() / len(dl)

def plot_losses(loss_label, title, save_location="model/loss.png"): 
    for k, v in loss_label.items():
        plt.plot(v, label=k)
    plt.legend()
    plt.title(title)
    plt.savefig(save_location)

def load_labels(input_file="model/label.json"):
    # Read the dictionary from the file
    with open(input_file, 'r') as file:
        dictionary = json.load(file)
    return dictionary

def evaluate(rnn, validation_dl, classes):
    # CODE AS IS FROM: https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html#evaluating-the-results
    confusion = torch.zeros(len(classes), len(classes))

    rnn.eval() #set to eval mode
    with torch.no_grad(): # do not record the gradients during eval phase
        for item in validation_dl:
            for text_tensor, label in item:
                output = rnn(text_tensor)
                #
                _, idx = output.topk(1) 
                guess, guess_i = classes[str(idx.item())], idx.item()
                label_i = label.item()
                confusion[label_i][guess_i] += 1

    # Normalize by dividing every row by its sum
    for i in range(len(classes)):
        denom = confusion[i].sum()
        if denom > 0:
            confusion[i] = confusion[i] / denom

    # Set up plot
    fig = plt.figure()
    ax = fig.add_subplot(111)
    cax = ax.matshow(confusion.cpu().numpy()) #numpy uses cpu here so we need to use a cpu version
    fig.colorbar(cax)

    tag = [classes[str(i)] for i in range(len(classes))]
    # Set up axes
    ax.set_xticks(np.arange(len(classes)), labels=tag, rotation=90)
    ax.set_yticks(np.arange(len(classes)), labels=tag)

    # Force label at every tick
    ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
    ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    # sphinx_gallery_thumbnail_number = 2
    plt.savefig("model/evaluate.png")

def load_labels(input_file="model/label.json"):
    # Read the dictionary from the file
    with open(input_file, 'r') as file:
        dictionary = json.load(file)
    return dictionary

if __name__=="__main__": 
    model = NameToLanguages(feature_size=len(string.ascii_letters))

    # #Sanity Check Model
    # x = torch.randn((1, 7, 26)) # (batch, word_length, one-hot-ascii-char)
    # model.eval()
    # with torch.no_grad():
    #     out = model(x)
    #     print(out.shape)

    # #Optimziers, Loss 
    optimizer = torch.optim.SGD(params=model.parameters(), lr=1e-3)
    loss_fn = nn.CrossEntropyLoss()
    n_epoch = 27

    # #Training Loop 
    ds = NamesDataset(transform=transform)
    train_ds, val_ds = random_split(ds, [0.7, 0.3], generator=torch.Generator().manual_seed(31))
    train_dl    = DataLoader(dataset=train_ds, batch_size=64, collate_fn=proxy_collate_batch)
    val_dl      = DataLoader(dataset=val_ds, collate_fn=proxy_collate_batch)
    # #Trackers 
    train_losses, val_losses = [], []

    for epoch in range(n_epoch):
        for batch in train_dl: 
            train_loss = training(model, batch, optimizer, loss_fn)
            # report val loss 
            
        train_losses.append(train_loss)
        val_loss = validation(model, val_dl, loss_fn)
        val_losses.append(val_loss)


        print(f"Epoch {epoch}: Train_loss: {train_losses[-1]}, Val_loss: {val_loss}")
    plot_losses({"train": train_losses, "val": val_losses}, "Training Loss")
    torch.save(model, "model/rnn.pth")

    classes = load_labels()
    evaluate(model, val_dl, classes)