Spaces:
Sleeping
Sleeping
title: Rag | |
emoji: 🐢 | |
colorFrom: gray | |
colorTo: indigo | |
sdk: gradio | |
sdk_version: 5.12.0 | |
app_file: app.py | |
pinned: false | |
short_description: Just another rag but with Images 🖼️ | |
# Just another RAG, dont bother much!! | |
## File Descriptions | |
### `z_document_reader.py` | |
Images are only useful to limited resource computer if it has a caption. So this file helps parse the wikipedia html strips it off the tags. | |
### `z_embedding.py` | |
Generates vector store. | |
### `z_generate.py` | |
Use LLM and prompting to find the relevant texts and images stored in the vector stores. | |
## Adding more data sources | |
Currently limited to wikipedia pages downloaded as HTML. | |
1. Place the html in the folder `_data` | |
2. Run command | |
`python z_embedding.py` | |
3. Output will be two FAISS vectors stores in the folder `cache_vector...` | |
## Local Debug | |
Highly recommend VS Code, makes life easy. | |
1. Create Virtual environment with name `sb-rag` using the below command | |
`python -m venv sb-rag` | |
2. Activate the environemnt (create new terminal VS Code to automatically do so) | |
3. Edit `.vscode/launch.json`. Fill in the environment variable `HF_SERVERLESS_API`. | |
4. Start VS Code debugger. | |
## References | |
1. UI Blocks Concepts: https://huggingface.co/learn/nlp-course/en/chapter9/7 | |
2. UI Row-Column Arrangement: https://www.gradio.app/guides/controlling-layout | |
2. Show caption in image gallery: https://github.com/gradio-app/gradio/issues/3364 | |
2. HF Implementation of basic: https://huggingface.co/learn/cookbook/en/advanced_rag | |
2. https://python.langchain.com/docs/integrations/vectorstores/faiss/ | |
## Ideas | |
1. Shows frames of design patterns: https://www.falkordb.com/blog/advanced-rag/ | |
2. HF Implementation of basic: https://huggingface.co/learn/cookbook/en/advanced_rag | |
2. HF RAG Evaluation: https://huggingface.co/learn/cookbook/en/rag_evaluation | |
2. HF Implementation by someone: https://medium.aiplanet.com/advanced-rag-implementation-on-custom-data-using-hybrid-search-embed-caching-and-mistral-ai-ce78fdae4ef6 | |
2. HF Agentic Rag: https://huggingface.co/learn/cookbook/en/agent_rag | |
2. Future read, tooning https://huggingface.co/blog/lucifertrj/finetune-embeddings | |
2. Opinion on instruct embeddings: https://huggingface.co/blog/Tonic/instruct-embeddings-and-advanced-rag | |
2. Another Implementation: https://huggingface.co/learn/cookbook/en/rag_zephyr_langchain | |
2. Another Opinion on ray: https://www.anyscale.com/blog/retrieval-augmented-generation-with-huggingface-transformers-and-ray | |
2. Ray Follow up: https://github.com/run-llama/ai-engineer-workshop/blob/main/presentation.pdf?__s=2il5g6hpfc4mtmydioir | |
2. llama Index rag implementation: https://docs.llamaindex.ai/en/latest/optimizing/production_rag/ | |
2. Just some termino book: https://www.projectpro.io/article/advanced-rag-techniques/1063 | |
2. Another Evaluation Guide: https://pub.towardsai.net/evaluating-rag-metrics-across-different-retrieval-methods-770aa01380c8 | |
2. Oracle Garbage: https://blogs.oracle.com/ai-and-datascience/post/ai-health-mixtral-oracle-23ai-rag-langchain-streamlit | |