Spaces:
Sleeping
Sleeping
File size: 7,910 Bytes
3bc0305 3dc2123 51ebb55 94adeb8 3dc2123 51ebb55 3dc2123 51ebb55 3dc2123 51ebb55 3dc2123 51ebb55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import gradio as gr
from transformers import pipeline
# --- Model Loading ---
# Using the model ID you've been working with, which is fine-tuned on an English dataset (IMDB).
# It's crucial that this model is indeed fine-tuned for sentiment analysis in English.
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
try:
# Attempt to load the pipeline. This needs to be outside the function for efficiency.
# The 'return_all_scores=True' is important for getting scores for all labels.
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, return_all_scores=True)
model_loaded_successfully = True
except Exception as e:
print(f"Error loading model: {e}")
sentiment_analyzer = None
model_loaded_successfully = False
# --- Custom CSS for a unique look ---
custom_css = """
body {
background-color: #f0f2f5; /* Light grey background */
}
.gradio-container {
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
border-radius: 15px;
overflow: hidden;
background-color: #ffffff; /* White card background */
}
h1, h2, h3 {
color: #4CAF50; /* Green accents */
text-align: center;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
animation: fadeIn 1s ease-in-out;
}
.gr-button.primary {
background-color: #4CAF50 !important;
color: white !important;
border-radius: 8px;
transition: background-color 0.3s ease;
}
.gr-button.primary:hover {
background-color: #45a049 !important;
}
.gradio-output {
border: 1px solid #e0e0e0;
border-radius: 10px;
padding: 15px;
margin-top: 20px;
background-color: #f9f9f9;
}
.sentiment-display {
text-align: center;
padding: 10px;
border-radius: 8px;
margin-top: 15px;
font-size: 1.2em;
font-weight: bold;
}
.sentiment-positive {
background-color: #e6ffe6; /* Light green */
color: #28a745; /* Darker green */
}
.sentiment-negative {
background-color: #ffe6e6; /* Light red */
color: #dc3545; /* Darker red */
}
.sentiment-neutral {
background-color: #e6f7ff; /* Light blue */
color: #007bff; /* Darker blue */
}
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
"""
# --- Helper Function for Sentiment Interpretation ---
def interpret_sentiment(label, score):
emoji = ""
description = ""
color_class = ""
if label.lower() == "positive": # Your model might output 'LABEL_2' or 'POS'
emoji = "π"
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
color_class = "sentiment-positive"
elif label.lower() == "negative": # Your model might output 'LABEL_0' or 'NEG'
emoji = "π "
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment."
color_class = "sentiment-negative"
elif label.lower() == "neutral": # Your model might output 'LABEL_1' or 'NEUTRAL'
emoji = "π"
description = "This text expresses a **neutral** sentiment."
color_class = "sentiment-neutral"
else:
emoji = "β"
description = "Could not confidently determine sentiment."
color_class = ""
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
f"<p>{description}</p>"
# --- Sentiment Analysis Function ---
def analyze_sentiment(text):
if not model_loaded_successfully:
return {
"Overall Sentiment": "<div class='sentiment-display'>β οΈ Model Not Loaded β οΈ</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
"Confidence Scores": {},
"Raw Output": "Model loading failed."
}
if not text.strip():
return {
"Overall Sentiment": "<div class='sentiment-display'>βοΈ Please enter some text! βοΈ</div><p>Start typing to analyze its sentiment.</p>",
"Confidence Scores": {},
"Raw Output": ""
}
try:
# The pipeline returns a list of dictionaries if return_all_scores=True
# e.g., [[{'label': 'LABEL_0', 'score': 0.9}, {'label': 'LABEL_1', 'score': 0.05}]]
results = sentiment_analyzer(text)[0] # Get the first (and only) list of results
# Sort results by score in descending order
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
# Get the top sentiment
top_sentiment = results_sorted[0]
label = top_sentiment['label']
score = top_sentiment['score']
# Format for Gradio Label component (Dictionary {label: score})
# This is for the 'Confidence Scores' output
confidence_scores_output = {item['label']: item['score'] for item in results}
# Interpret sentiment for the 'Overall Sentiment' output
overall_sentiment_display = interpret_sentiment(label, score)
return {
"Overall Sentiment": overall_sentiment_display,
"Confidence Scores": confidence_scores_output,
"Raw Output": str(results)
}
except Exception as e:
return {
"Overall Sentiment": f"<div class='sentiment-display'>β Error β</div><p>An error occurred during analysis: {e}</p>",
"Confidence Scores": {},
"Raw Output": f"Error: {e}"
}
# --- Gradio Interface ---
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: # Using gr.Blocks for more layout control
gr.Markdown("# β¨ Sentiment Spark β¨")
gr.Markdown("---")
gr.Markdown("### Uncover the emotional tone of your English text instantly!")
with gr.Row(): # Horizontal layout for input and outputs
with gr.Column(scale=2):
text_input = gr.Textbox(
lines=7,
placeholder="Type your English text here...",
label="Your Text",
interactive=True,
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion."
)
analyze_btn = gr.Button("Analyze Sentiment", variant="primary") # The main action button
gr.Markdown("---")
gr.Markdown("### Try some examples:")
gr.Examples(
examples=[
["This product exceeded my expectations, truly amazing!"],
["I found the customer service to be quite disappointing and slow."],
["The weather forecast predicts light rain for tomorrow morning."],
["What a fantastic experience! Highly recommend it."],
["I'm so frustrated with this slow internet connection."],
["The meeting concluded without any major decisions."]
],
inputs=text_input,
cache_examples=True # Caching examples for faster loading
)
with gr.Column(scale=3):
gr.Markdown("## π Analysis Results π")
overall_sentiment_output = gr.HTML(label="Overall Sentiment") # Using HTML to render custom styled sentiment
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores") # Default Gradio Label
raw_output = gr.JSON(label="Raw Model Output", visible=False) # For debugging/advanced users
# --- Event Listeners ---
text_input.change(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output],
# live=True # Uncomment for live updates as user types (can be resource intensive)
)
analyze_btn.click(
fn=analyze_sentiment,
inputs=text_input,
outputs=[overall_sentiment_output, confidence_scores_output, raw_output]
)
demo.launch() |