Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,203 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
-
#
|
|
|
|
|
5 |
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
|
6 |
|
7 |
-
# Cargar el pipeline del modelo
|
8 |
try:
|
9 |
-
|
|
|
|
|
|
|
10 |
except Exception as e:
|
11 |
-
print(f"Error
|
12 |
-
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def analyze_sentiment(text):
|
15 |
-
if not
|
16 |
-
return {
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
#
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# --- Model Loading ---
|
5 |
+
# Using the model ID you've been working with, which is fine-tuned on an English dataset (IMDB).
|
6 |
+
# It's crucial that this model is indeed fine-tuned for sentiment analysis in English.
|
7 |
MODEL_ID = "Light-Dav/sentiment-analysis-full-project"
|
8 |
|
|
|
9 |
try:
|
10 |
+
# Attempt to load the pipeline. This needs to be outside the function for efficiency.
|
11 |
+
# The 'return_all_scores=True' is important for getting scores for all labels.
|
12 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model=MODEL_ID, return_all_scores=True)
|
13 |
+
model_loaded_successfully = True
|
14 |
except Exception as e:
|
15 |
+
print(f"Error loading model: {e}")
|
16 |
+
sentiment_analyzer = None
|
17 |
+
model_loaded_successfully = False
|
18 |
|
19 |
+
# --- Custom CSS for a unique look ---
|
20 |
+
custom_css = """
|
21 |
+
body {
|
22 |
+
background-color: #f0f2f5; /* Light grey background */
|
23 |
+
}
|
24 |
+
.gradio-container {
|
25 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
26 |
+
border-radius: 15px;
|
27 |
+
overflow: hidden;
|
28 |
+
background-color: #ffffff; /* White card background */
|
29 |
+
}
|
30 |
+
h1, h2, h3 {
|
31 |
+
color: #4CAF50; /* Green accents */
|
32 |
+
text-align: center;
|
33 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
34 |
+
animation: fadeIn 1s ease-in-out;
|
35 |
+
}
|
36 |
+
.gr-button.primary {
|
37 |
+
background-color: #4CAF50 !important;
|
38 |
+
color: white !important;
|
39 |
+
border-radius: 8px;
|
40 |
+
transition: background-color 0.3s ease;
|
41 |
+
}
|
42 |
+
.gr-button.primary:hover {
|
43 |
+
background-color: #45a049 !important;
|
44 |
+
}
|
45 |
+
.gradio-output {
|
46 |
+
border: 1px solid #e0e0e0;
|
47 |
+
border-radius: 10px;
|
48 |
+
padding: 15px;
|
49 |
+
margin-top: 20px;
|
50 |
+
background-color: #f9f9f9;
|
51 |
+
}
|
52 |
+
.sentiment-display {
|
53 |
+
text-align: center;
|
54 |
+
padding: 10px;
|
55 |
+
border-radius: 8px;
|
56 |
+
margin-top: 15px;
|
57 |
+
font-size: 1.2em;
|
58 |
+
font-weight: bold;
|
59 |
+
}
|
60 |
+
.sentiment-positive {
|
61 |
+
background-color: #e6ffe6; /* Light green */
|
62 |
+
color: #28a745; /* Darker green */
|
63 |
+
}
|
64 |
+
.sentiment-negative {
|
65 |
+
background-color: #ffe6e6; /* Light red */
|
66 |
+
color: #dc3545; /* Darker red */
|
67 |
+
}
|
68 |
+
.sentiment-neutral {
|
69 |
+
background-color: #e6f7ff; /* Light blue */
|
70 |
+
color: #007bff; /* Darker blue */
|
71 |
+
}
|
72 |
+
@keyframes fadeIn {
|
73 |
+
from { opacity: 0; }
|
74 |
+
to { opacity: 1; }
|
75 |
+
}
|
76 |
+
"""
|
77 |
+
|
78 |
+
# --- Helper Function for Sentiment Interpretation ---
|
79 |
+
def interpret_sentiment(label, score):
|
80 |
+
emoji = ""
|
81 |
+
description = ""
|
82 |
+
color_class = ""
|
83 |
+
|
84 |
+
if label.lower() == "positive": # Your model might output 'LABEL_2' or 'POS'
|
85 |
+
emoji = "😊"
|
86 |
+
description = "This text expresses a **highly positive** sentiment." if score > 0.9 else "This text expresses a **positive** sentiment."
|
87 |
+
color_class = "sentiment-positive"
|
88 |
+
elif label.lower() == "negative": # Your model might output 'LABEL_0' or 'NEG'
|
89 |
+
emoji = "😠"
|
90 |
+
description = "This text expresses a **highly negative** sentiment." if score > 0.9 else "This text expresses a **negative** sentiment."
|
91 |
+
color_class = "sentiment-negative"
|
92 |
+
elif label.lower() == "neutral": # Your model might output 'LABEL_1' or 'NEUTRAL'
|
93 |
+
emoji = "😐"
|
94 |
+
description = "This text expresses a **neutral** sentiment."
|
95 |
+
color_class = "sentiment-neutral"
|
96 |
+
else:
|
97 |
+
emoji = "❓"
|
98 |
+
description = "Could not confidently determine sentiment."
|
99 |
+
color_class = ""
|
100 |
+
|
101 |
+
return f"<div class='sentiment-display {color_class}'>{emoji} {label.upper()} ({score:.2f})</div>" + \
|
102 |
+
f"<p>{description}</p>"
|
103 |
+
|
104 |
+
# --- Sentiment Analysis Function ---
|
105 |
def analyze_sentiment(text):
|
106 |
+
if not model_loaded_successfully:
|
107 |
+
return {
|
108 |
+
"Overall Sentiment": "<div class='sentiment-display'>⚠️ Model Not Loaded ⚠️</div><p>Please contact the administrator. The sentiment analysis model failed to load.</p>",
|
109 |
+
"Confidence Scores": {},
|
110 |
+
"Raw Output": "Model loading failed."
|
111 |
+
}
|
112 |
+
|
113 |
+
if not text.strip():
|
114 |
+
return {
|
115 |
+
"Overall Sentiment": "<div class='sentiment-display'>✍️ Please enter some text! ✍️</div><p>Start typing to analyze its sentiment.</p>",
|
116 |
+
"Confidence Scores": {},
|
117 |
+
"Raw Output": ""
|
118 |
+
}
|
119 |
+
|
120 |
+
try:
|
121 |
+
# The pipeline returns a list of dictionaries if return_all_scores=True
|
122 |
+
# e.g., [[{'label': 'LABEL_0', 'score': 0.9}, {'label': 'LABEL_1', 'score': 0.05}]]
|
123 |
+
results = sentiment_analyzer(text)[0] # Get the first (and only) list of results
|
124 |
+
|
125 |
+
# Sort results by score in descending order
|
126 |
+
results_sorted = sorted(results, key=lambda x: x['score'], reverse=True)
|
127 |
+
|
128 |
+
# Get the top sentiment
|
129 |
+
top_sentiment = results_sorted[0]
|
130 |
+
label = top_sentiment['label']
|
131 |
+
score = top_sentiment['score']
|
132 |
+
|
133 |
+
# Format for Gradio Label component (Dictionary {label: score})
|
134 |
+
# This is for the 'Confidence Scores' output
|
135 |
+
confidence_scores_output = {item['label']: item['score'] for item in results}
|
136 |
+
|
137 |
+
# Interpret sentiment for the 'Overall Sentiment' output
|
138 |
+
overall_sentiment_display = interpret_sentiment(label, score)
|
139 |
+
|
140 |
+
return {
|
141 |
+
"Overall Sentiment": overall_sentiment_display,
|
142 |
+
"Confidence Scores": confidence_scores_output,
|
143 |
+
"Raw Output": str(results)
|
144 |
+
}
|
145 |
+
except Exception as e:
|
146 |
+
return {
|
147 |
+
"Overall Sentiment": f"<div class='sentiment-display'>❌ Error ❌</div><p>An error occurred during analysis: {e}</p>",
|
148 |
+
"Confidence Scores": {},
|
149 |
+
"Raw Output": f"Error: {e}"
|
150 |
+
}
|
151 |
+
|
152 |
+
# --- Gradio Interface ---
|
153 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo: # Using gr.Blocks for more layout control
|
154 |
+
gr.Markdown("# ✨ Sentiment Spark ✨")
|
155 |
+
gr.Markdown("---")
|
156 |
+
gr.Markdown("### Uncover the emotional tone of your English text instantly!")
|
157 |
+
|
158 |
+
with gr.Row(): # Horizontal layout for input and outputs
|
159 |
+
with gr.Column(scale=2):
|
160 |
+
text_input = gr.Textbox(
|
161 |
+
lines=7,
|
162 |
+
placeholder="Type your English text here...",
|
163 |
+
label="Your Text",
|
164 |
+
interactive=True,
|
165 |
+
value="This movie was absolutely brilliant! A masterpiece of storytelling and emotion."
|
166 |
+
)
|
167 |
+
analyze_btn = gr.Button("Analyze Sentiment", variant="primary") # The main action button
|
168 |
+
|
169 |
+
gr.Markdown("---")
|
170 |
+
gr.Markdown("### Try some examples:")
|
171 |
+
gr.Examples(
|
172 |
+
examples=[
|
173 |
+
["This product exceeded my expectations, truly amazing!"],
|
174 |
+
["I found the customer service to be quite disappointing and slow."],
|
175 |
+
["The weather forecast predicts light rain for tomorrow morning."],
|
176 |
+
["What a fantastic experience! Highly recommend it."],
|
177 |
+
["I'm so frustrated with this slow internet connection."],
|
178 |
+
["The meeting concluded without any major decisions."]
|
179 |
+
],
|
180 |
+
inputs=text_input,
|
181 |
+
cache_examples=True # Caching examples for faster loading
|
182 |
+
)
|
183 |
+
|
184 |
+
with gr.Column(scale=3):
|
185 |
+
gr.Markdown("## 📈 Analysis Results 📉")
|
186 |
+
overall_sentiment_output = gr.HTML(label="Overall Sentiment") # Using HTML to render custom styled sentiment
|
187 |
+
confidence_scores_output = gr.Label(num_top_classes=3, label="Confidence Scores") # Default Gradio Label
|
188 |
+
raw_output = gr.JSON(label="Raw Model Output", visible=False) # For debugging/advanced users
|
189 |
+
|
190 |
+
# --- Event Listeners ---
|
191 |
+
text_input.change(
|
192 |
+
fn=analyze_sentiment,
|
193 |
+
inputs=text_input,
|
194 |
+
outputs=[overall_sentiment_output, confidence_scores_output, raw_output],
|
195 |
+
# live=True # Uncomment for live updates as user types (can be resource intensive)
|
196 |
+
)
|
197 |
+
analyze_btn.click(
|
198 |
+
fn=analyze_sentiment,
|
199 |
+
inputs=text_input,
|
200 |
+
outputs=[overall_sentiment_output, confidence_scores_output, raw_output]
|
201 |
+
)
|
202 |
+
|
203 |
+
demo.launch()
|